Les neurones dopaminergiques du mésencéphale (mDA) sont impliqués de manière critique dans diverses fonctions clés du cerveau, y compris les mouvements volontaires, la récompense, l'attention et l'apprentissage. La bonne spécification des neurones dopaminergique, ainsi que l’établissement des circuits dopaminergiques sont nécessaires à un bon fonctionnement du cerveau. Le dysfonctionnement des circuits dopaminergiques est lié au développement de troubles neuropsychiatriques, y compris le trouble déficitaire de l'attention avec hyperactivité (TDAH), le trouble obsessionnel compulsif (TOC) et les troubles liés aux TOCs, comme le syndrome de Gilles de la Tourette. L’obtention d’un circuit dopaminergique fonctionnel dépend du développement des neurones dopaminergiques. Les facteurs de transcription Lmx1a et Lmx1b font partie de la famille des LIM à homeodomain et sont des déterminants précoces de l’avenir des neurones dopaminergique. Lmx1a/b sont essentiels pour chaque étape de la différenciation des progéniteurs de neurone dopaminergique. Il a été démontré précédemment que les souris Lmx1a/b cKO ont une activité locomotrice augmentée par rapport aux contrôles. Ici, une caractérisation approfondie des souris Lmx1a/b a révélé que ces souris avaient un comportement hyperactif, en lien avec le TDAH, et démontraient des symptômes du type TOC. Au niveau cellulaire, la perte de fonction de Lmx1a/b a induit une réduction de l’arborisation dendritique et de la fréquence des courants postsynaptiques excitateurs miniatures spontanés (mEPSCs) dans les neurones dopaminergiques. Le profil d'expression des gènes chez les souris Lmx1a / b cKO a révélé que Lmx1a/b contrôle l'expression de Slitrk2 et Slitrk5, deux membres de la famille des protéines Slit et Trk (Slitrk). Le gain et la perte de fonction de Slitrk2 et Slitrk5 dans des cultures de neurones dopaminergiques ont montré que Slitrk2 régule positivement et Slitrk5 régulent négativement la croissance dendritique. Également, le gain et la perte de fonction de Slitrk2 ont induit une variation de la densité des punctas synaptiques excitateurs (PSD95 et VGLUT). En conséquence, la perte de fonction de Slitrk2 a réduit la fréquence des mEPSCs, tandis que l'augmentation de l'expression de Slitrk2 a augmenté la fréquence des mEPSCs, sans changement d'amplitude ou dans la fréquence ou de l'amplitude des mIPSCs. Ces données suggèrent un rôle pour Slitrk2 dans la formation de synapses excitatrices fonctionnelles. À l'inverse, le gain et la perte de fonction de Slitrk5 ont induit une modification de la densité des punctas synaptiques inhibiteurs (géphyrine et VGAT). La perte d’expression de Slitrk5 a réduit la fréquence des mIPSCs tandis que l'augmentation de l'expression de Slitrk5 a augmenté la fréquence des mIPSCs, sans changement dans l'amplitude ou de la fréquence et de l'amplitude des mEPSCs. Ces données suggèrent un rôle pour Slitrk5 dans la formation de synapses fonctionnelles inhibitrices. Nous avons également étudié les conséquences sur le comportement de Slitrk2 et Slitrk5 dans les neurones mDA. Les souris, dans lesquelles Slitrk2 a été invalidé dans la VTA, démontrent un changement significatif dans l'activité locomotrice et montrent de l’hyperactivité. À l'inverse, les souris avec une expression réduite de Slitrk5 présentent une activité locomotrice réduite et un comportement analogue à un TOC. Ces changements de comportement peuvent être causés par une modification de l'activité des neurones dopaminergiques. L'inhibition chronique des neurones de la VTA, en utilisant une approche pharmacogénétique, pendant le développement postnatal à induit une activité motrice augmentée, similaire au TDAH, et un comportement analogue à un TOC. Ceci évoque certains aspects du comportement des souris Lmx1a/b cKO. Une inhibition aiguë a entraîné une diminution de l'activité locomotrice, alors que l'inhibition chronique chez des animaux plus âgés n'a eu aucun effet. Ensemble, ces résultats indiquent que Lmx1a/b, Slitrk2, et Slitrk5 sont des acteurs clés du développement des neurones dopaminergique et de la formation des synapses, ce qui peut avoir un impact sur le développement de TDAH et de TOC. / Midbrain dopaminergic (mDA) neurons are critically involved in various key functions of the brain, including voluntary movement, reward, attention, and learning. The proper specification of dopaminergic neurons, as well as the establishment of dopaminergic circuits are necessary to a good functioning of the brain. Dopaminergic circuitry dysfunctions are linked to the development of neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD) and OCD-like disorders, such as Gilles de la Tourette’s syndrome. The LIM-homeodomain transcriptional factors Lmx1a and Lmx1b are early determinants of the dopaminergic fate and are essential for each step of mDA progenitor differentiation. Previously, it has been demonstrated that Lmx1a/b cKO mice show increased locomotor activity. Further characterization of Lmx1a/b cKO mice revealed that these mice had ADHD- and OCD-like behaviour. The loss of function of Lmx1a/b reduced dendritic morphology and frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in mDA neurons. Gene expression profiling in Lmx1a/b cKO mice revealed that Lmx1a/b controls the expression of Slitrk2 and Slitrk5, two members of the Slit and Trk-like (Slitrk) protein family. Gain and loss of function of Slitrk2 and Slitrk5 in mDA neuron cultures showed that Slitrk2 positively regulates and Slitrk5 negatively regulate dendritic growth. Additionally, gain and loss of function of Slitrk2 induced a change in the density of excitatory synaptic puncta (PSD95 and VGLUT). Accordingly, Slitrk2 knockdown reduced the frequency of mEPSCs while increased Slitrk2 expression increased the frequency of mEPSCs, with no change in amplitude or in mIPSCs frequency or amplitude. These data suggest a role for Slitrk2 in the formation of functional excitatory synapses. Inversely, gain and loss of function of Slitrk5 induced a modification in the density of inhibitory synaptic puncta (gephyrin and VGAT). Slitrk5 knockdown reduced the frequency of mIPSCs while increased Slitrk5 expression increased the frequency of mIPSCs, with no change in amplitude or in mEPSCs frequency or amplitude. These data suggest a role for Slitrk5 in the formation of functional inhibitory synapses. We also investigated the consequences on behaviour of Slitrk2 and Slitrk5 reduced expression in mDA neurons. Mice, in which Slitrk2 was knocked down in the VTA, display significant change in locomotor activity and show ADHD. Inversely, mice with reduced expression of Slitrk5 exhibit lower activity and OCD-like behaviour. These behavioural changes might be caused by a change in mDA neuron firing activity. Chronic inhibition of mDA neurons during postnatal development using a pharmacogenetic approach induced ADHD and OCD-like behaviour and mimic some aspects of the Lmx1a/b cKO mice. Acute inhibition resulted in decreased locomotor activity, while chronic inhibition in older animals had no effect. Altogether, these results indicate that Lmx1a/b and Slitrk2/5 are key players of mDA neuron development and synapse formation, which may have an impact on ADHD and OCD-like disorders. / Résumé en espagnol
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/37744 |
Date | 10 January 2020 |
Creators | Salesse, Charleen |
Contributors | De Koninck, Paul, Lévesque, Martin |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxiii, 204 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0025 seconds