Spelling suggestions: "subject:"asystèmes dopaminergic"" "subject:"desystèmes dopaminergic""
1 |
Modulation de la transmission dopaminergique par les récepteurs nucléaires orphelins NURR1 et NUR77 : rôles distincts et interactionsHone-Blanchet, Antoine 18 April 2018 (has links)
Les récepteurs nucléaires orphelins Nurrl et Nur77 sont des facteurs de transcription qui remplissent des fonctions différentes au sein des systèmes dopaminergiques adultes. Cela dit, ils sont tous deux impliqués dans les réponses comportementales imputables à ces systèmes. L'objectif de l'étude était de déterminer la possibilité d'une interaction fonctionnelle entre les deux récepteurs en comparant différentes souches de souris transgéniques. Nous avons observé que la suppression du gène Nur77 et la réduction partielle de Nurrl mènent à l'expression d'un phénotype particulier chez les animaux Double Knockout (Nurrl (+/-); Nur77 (-/-))dans divers protocoles expérimentaux évaluant l' activité locomotrice en conditions basales ou sous l' influence d' agents pharmacologiques. Nous avons également mesuré les niveaux d'expression de certaines neuropeptides, l' enképhaline et la dynorphine, qui sont également modulés différemment chez les animaux Double Knockout dans un contexte de stimulation et de blocage des récepteurs dopaminergiques. Nos résultats suggèrent qu'une interaction fonctionnelle et dépendante du contexte entre Nurrl et Nur77 existe.
|
2 |
Découverte de la micro-circuiterie dopaminergique par approche de traçage virale trans-synaptiqueKarioun, Yahia 25 November 2024 (has links)
Les neurones dopaminergiques (DA) du mésencéphale sont la principale source de dopamine dans le cerveau. Les neurones moyens épineux (MSN) du striatum reçoivent la majorité de la dopamine. Cette dopamine se lie à des récepteurs DAergiques qui existent principalement sous deux formes : ceux de type D1 (DrD1) ou de type D2 (DrD2). En se liant à DrD1 ou DrD2, la dopamine exerce des effets opposés, respectivement excitateurs ou inhibiteurs. De précédentes études de traçage neuronal ont fait état d'une innervation différentielle à travers le cerveau des MSN du striatum dorsal (DSt) pour l'un et l'autre type de récepteur DA. Nous **prévoyons** que les MSN du noyau accumbens (NAc) du striatum ventral (VSt) ont également une innervation différentielle pour chaque type de récepteur DA. Par ailleurs, les neurones DA du mésencéphale ne sont pas homogènes et possèdent des profils génétiques et projections axonales distincts. L'identification de nouveaux sous-types de neurones DA nous mène à émettre **l'hypothèse** que certains d'entre eux cibleraient spécifiquement les MSN DrD1+ ou DrD2+. Nous avons développé une **approche** de marquage neuronal utilisant des vecteurs viraux trans-synaptiques afin de visualiser les sous-circuits ciblant les récepteurs DA du NAc. Pour marquer les neurones ciblant DrD1 ou DrD2, nous utilisons des souris transgéniques qui expriment les recombinases Cre et Flippase (Flp) dans les neurones DrD1 et DrD2 respectivement. À l'aide d'AAV dépendants de Cre ou de Flip, nous forçons l'entrée d'un second vecteur viral rabique (RabV) exprimant des protéines fluorescentes. Cette approche nous permet de marquer sélectivement les neurones établissant des synapses avec les MSN du NAc exprimant DrD1 ou DrD2. Afin de caractériser les sous-types de neurones DA ciblant les MSN DrD1+ ou DrD2+, nous utilisons des techniques de marquage immunohistochimique spécifiques aux différents sous-types de neurones DA. Nos résultats suggèrent qu'il existe des régions du cerveau ciblant de manière préférentielle les MSN exprimant DrD1 ou DrD2 dans le NAc. D'autre part nous nous sommes retrouvés confrontés à une toxicité accrue des neurones DA du mésencéphale marqués par le vecteur RabV. Cette toxicité de RabV a grandement altéré l'identification de sous-types DA marqués et ne nous permet pas de tirer de conclusions satisfaisantes En **conclusion**, la réalisation de ce projet sert de base à l'établissement d'une cartographie des sous-circuits dopaminergiques du NAc. Notre modèle pourrait être appliqué à des études fonctionnelles et à d'autres régions cérébrales afin de mieux caractériser des sous-circuits du cerveau qui demeurent encore inconnus. / The midbrain dopaminergic (DA) neurons are the main source of dopamine in the brain. The medium spiny neurons (MSNs) of the striatum receive most of the dopamine. This dopamine binds to DA receptors, which mainly exist in two forms: type D1 (DrD1) and type D2 (DrD2). By binding to DrD1 or DrD2, dopamine exerts opposite effects, respectively, excitatory, or inhibitory. Previous neuronal tracing studies have reported differential innervation across the brain of dorsal striatum (DSt) for each type of MSN DA receptor. We **hypothesize** that the MSNs of the nucleus accumbens (NAc) in the ventral striatum (VSt) also have a differential innervation for each type of DA receptor. Moreover, midbrain DA neurons are not homogeneous and have distinct genetic profiles and axonal projections. The identification of new DA neuron subtypes leads us to **hypothesize** that some of them specifically target DrD1+ or DrD2+ MSNs. We have developed a neuronal tracing **approach** using trans-synaptic viral vectors to visualize the brain sub-circuits targeting specific DA receptors in the NAc. To label the neurons targeting those expressing DrD1 or DrD2, we used transgenic mice whose MSNs express Cre recombinase (DrD1) and Flip recombinase (DrD2). Using Cre- or Flip-dependent AAV vectors, we induce the entry of a rabies (RabV) viral vector expressing fluorescent proteins. This approach allows us to selectively label neurons that form synapses with NAc MSNs expressing DrD1 or DrD2. To characterize the subtypes of DA neurons targeting DrD1+ or DrD2+ MSNs, we use immunohistochemical techniques using antibodies to specifically mark the different subtypes of DA neurons. Our results suggest that there are regions across the brain that preferentially form synapses with MSNs expressing DrD1 or DrD2 in the NAc. On the other hand, we encountered increased toxicity in midbrain DA neurons labeled by the RabV vector. This RabV toxicity significantly impaired the identification of labeled DA subtypes and does not allow us to draw satisfactory conclusions. In **conclusion**, this project serves as a basis for establishing a mapping of the dopaminergic sub-circuits of the NAc. Our model could be applied to functional studies and to other brain regions to better characterize brain sub-circuits that remains unknown. Read more
|
3 |
Perturbations de la transmission dopaminergique chez les souris présentant une réduction de nurr1Baillargeon, Joanie 13 April 2018 (has links)
Le facteur de transcription Nurrl est un récepteur nucléaire orphelin hautement impliqué dans le développement du système dopaminergique. Son expression persistante à l'âge adulte soulève toutefois de nombreuses questions quant à son rôle exact dans le cerveau mature. L'objectif de cette étude était d'évaluer les effets d'une diminution partielle du facteur de transcription Nurrl sur la transmission dopaminergique chez des souris adultes. Nous avons d'abord observé qu'une réduction partielle de Nurrl n'influence pas le comportement locomoteur des souris en conditions basales. Par contre, l'administration aiguë d'amphétamine chez les souris Nurrl (+/-) induit une brève augmentation de l'activité locomotrice précédant l'apparition marquée de mouvements verticaux et stéréotypés. La modulation de différents marqueurs tels que Nurrl, Nur77, Nor-1 et l'ENK fut également étudiée. De façon générale, nos résultats démontrent des modifications plus ou moins importantes de l'expression de ce neuropeptide et de ces récepteurs nucléaires en présence ou non du psychostimulant. Enfin, l'ensemble de ces résultats suggèrent qu'une réduction partielle de Nurrl induit des changements importants dans la transmission dopaminergique Read more
|
4 |
Mécanismes cellulaires et comportementaux de libération dopaminergiqueBouchard, Sarah-Julie 05 November 2024 (has links)
La libération dopaminergique permet de transmettre des signaux importants sur la motivation et le contrôle moteur. Le transporteur de dopamine DAT est un acteur important de ce phénomène et implique dans sa régulation Rit2, une GTPase liée à plusieurs pathologies comme la maladie de Parkinson et la schizophrénie. La dopamine est également impliquée dans l'apprentissage par renforcement et la signalisation de stimulus appétitifs et aversifs. Nous avons mesuré, dans des modèles de surexpression et de répression génique de Rit2 dans les neurones dopaminergiques, la quantité de DAT, l'activité électrique, la signalisation dopaminergique et l'effet sur le comportement. Nous avons également observé la libération dopaminergique chez des animaux dans un paradigme de conditionnement classique avec un senseur de dopamine et la photométrie à fibre. La surexpression de RIT2 dans les neurones dopaminergiques a mené à une diminution de DAT et des neurones plus actifs et synchronisés présentant une amplitude de libération dopaminergique réduite. La répression génique de Rit2 a mené à une augmentation des niveaux de DAT et une réduction de la durée du signal dopaminergique. Finalement, la modification de l'expression de Rit2 a eu un impact sur un comportement d'apprentissage. Nos résultats montrent également une libération dopaminergique suivant la récompense dans toutes les cibles étudiées, mais une réponse hétérogène à la punition. En particulier, les cibles présentant une réponse à la punition plus grande ou égale à celle de la récompense encodaient moins l'attente de la récompense. Nos données indiquent que la modification de l'expression de Rit2 a un impact sur la signalisation dopaminergique, possiblement à travers une modification de la disponibilité de DAT. De plus, on observe que les cibles présentant une plus grande réponse à la récompense présentent une signalisation similaire à la théorie de l'erreur de prédiction de la récompense, à la différence des autres cibles étudiées. / Dopamine release allows for transmission of important signals linked to motivation and motor control. The dopamine transporter DAT is an important player in this signaling and involves in its regulation Rit2, a GTPase linked to disorders such as Parkinson's disease and schizophrenia. Dopamine is also implicated in reinforcement learning and signaling of appetitive and aversive stimuli. Here, we measured, in models of overexpression and knock-down of Rit2, the amount of DAT, the electrical activity, the dopaminergic signaling dynamics and the effect on behavior of the modification of the expression of Rit2. We also measured dopamine release with a dopamine sensor and fiber photometry in animals trained on a classical conditioning paradigm. Overexpression of Rit2 led to a reduction of DAT, and the reverse was observed in the knock-down condition. Neurons overexpressing Rit2 were more active and synchronized and showed a reduction in the amplitude of dopamine release. Knock-down of Rit2 led to a shorter dopamine signal following optogenetic stimulation. Finally, modification of the expression of Rit2 impacted learning behavior. Our results showed dopamine release following reward in all our investigated targets, but a diversity of responses to punishment in those same targets. Targets showing bigger or equal response to punishment when comparing to reward showed less encoding of reward expectation, contrary to the ones signaling more reward, who showed a stronger encoding of reward expectation. Our data show that modifying the expression of Rit2 impacts dynamics of dopamine signaling, possibly through the modification of the amount of DAT. Moreover, we observed that the targets showing a bigger response to reward presented a signaling in line with the reward prediction error, contrary to the other targets. Read more
|
5 |
Caractérisation des projections dopaminergiques visant le cortex moteur chez le ratLejeune, Quentin 02 February 2024 (has links)
Le cortex moteur est responsable de la plupart des mouvements volontaires. Cependant, cette appellation de cortex moteur couvre en réalité plusieurs aires corticales chez l'humain, comme le cortex moteur primaire, le cortex prémoteur ou encore le cortex somatosensoriel, interagissant tous les uns avec les autres. Les zones des cortex sont reliées à des régions spécifiques du corps ; comme le CFA (Caudal Forlimb area) situé dans le cortex moteur primaire chez le rat, qui est la zone responsable des mouvements de la patte avant. Le CFA n'est pas la seule zone responsable des mouvements de la patte avant. Des travaux ont montré qu'une seconde zone existe dans le cortex prémoteur chez le primate, et dans le cortex moteur secondaire chez le rongeur. L'apprentissage tout au long de notre vie est possible grâce à la réorganisation des connexions neuronales dans les différents cortex. Ces changements ne sont pas spontanés et semblent être possibles suite au relâchement de la dopamine dans le cortex par les neurones dopaminergiques. Mon mémoire de maitrise porte sur l'exploration de l'origine de ces projections dopaminergiques vers les zones permettant le mouvement des pattes avant chez le rat, ainsi que sur la comparaison entre les projections dopaminergiques visant chacune de ces zones. Dans un premier temps, une brève présentation des différents cortex chez le rat et le primate, ainsi que de leurs fonctions connues sera effectuée, suivie d'une présentation de la dopamine et de ses implications dans la plasticité et le mouvement. Dans un second temps, les résultats obtenus lors de l'injection de différents marqueurs rétrogrades (Virus rétrograde, CTB et retrobeads) seront exposés, et conduiront à la conclusion que les neurones dopaminergiques projetant vers ces cortex se situent dans le mésencéphale, plus précisément dans l'aire ventrale tegmentale (VTA) et dans la substance noire. Read more
|
6 |
Caractérisation fonctionnelle et moléculaire des circuits dopaminergiques dans la dépressionTouchant, Maureen 15 January 2025 (has links)
La dépression majeure est un trouble de l'humeur très courant, qui se caractérise particulièrement par une humeur triste et une anhédonie. C'est une des causes majeures d'incapacité chez l'homme. L'exposition prolongée à un environnement stressant entraine la mise en place de stratégies d'adaptation. L'anhédonie est associée à une altération du système dopaminergique pouvant expliquer la survenue d'une dépression induite par le stress. Ceci est corroboré par une réduction de la complexité dendritique au niveau des projections dopaminergiques au sein de la voie mésocorticale, chez des souris susceptibles au stress chronique de la défaite sociale. Ces modifications affectent l'activité cellulaire et synaptique via une altération de la translation locale. Celle-ci consiste à acheminer des ARNm au niveau des dendrites et des axones, afin de produire localement les protéines nécessaires au bon fonctionnement de la cellule ou d'adapter les besoins protéiques suite au stress induit à long-terme. Cette recherche s'intéresse à ce mécanisme afin de comprendre comment il est affecté au sein des neurones dopaminergiques constituant la voie mésocorticolimbique chez des souris soumises à un stress chronique de défaite sociale. Les données transcriptomiques des neurones dopaminergiques mettent en lumière des gènes différentiellement exprimés de manière spécifique au sexe, au phénotype et à la région neuronale. Parmi ceux-ci, les gènes qui induisent des changements morpho-fonctionnels sont particulièrement intéressants. L'objectif de cette recherche est de définir le rôle de ces gènes dans le contrôle de la plasticité synaptique de manière spécifique et de révéler leur contribution à l'expression du phénotype, soit susceptible soit résilient au stress social. En conclusion, le paradigme de la défaite sociale induit des phénotypes distincts, comme les tests comportementaux l'attestent. Les analyses bio-informatiques doivent être approfondies afin de pouvoir déterminer avec précision les gènes d'intérêts chez la souris pour *in fine* moduler l'expression de ces gènes cibles *in vivo* et *in vitro*. / Major depression is a very common mood disorder, particularly characterized by sad mood and anhedonia. It is one of the major causes of disability in humans. Prolonged exposure to a stressful environment leads to the implementation of coping strategies. Anhedonia is associated with an alteration of the dopaminergic system which may explain the occurrence of stress-induced depression. This is corroborated by a reduction in dendritic complexity at the level of dopaminergic projections within the mesocortical pathway, in mice susceptible to chronic stress of social defeat. These modifications affect cellular and synaptic activity through an alteration of local translation. This consists of transporting mRNAs within dendrites and axons, to locally produce the proteins necessary for the proper functioning of the cell or to adapt protein needs following the induction of long-term stress. This research focuses its interest on this mechanism in order to understand how it is affected within the dopaminergic neurons forming the mesocorticolimbic pathway in mice subjected to chronic stress of social defeat. Transcriptomic data from dopamine neurons highlight genes differentially expressed in a sex-, phenotype-, and neuronal region-specific manner. Among these, we are particularly interested in those which induce morpho-functional changes. The goal of this research is to define the role of these genes in the control of synaptic plasticity in a specific manner and to reveal their contribution to the expression of the phenotype, either susceptible or resilient to social stress. In conclusion, the social defeat paradigm induces distinct phenotypes, as demonstrated by behavioral assessments. Bioinformatics analyzes must be in-depth in order to be able to precisely determine the genes of interest in mice and ultimately modulate the expression of these target genes both *in vivo* and *in vitro*. Read more
|
7 |
Caractérisation fonctionnelle et moléculaire du circuit dopaminergique dans un modèle de la dépressionQuessy, Francis 27 January 2024 (has links)
Contexte : Notre capacité à développer les stratégies cognitives nécessaire pour faire face au stress de la vie quotidienne est régulée par différents réseaux neuronaux spécifiques à chacune des régions du cerveau. Des évidences expérimentales suggèrent qu'un stress prolongé chez la souris induit des comportements dépressifs via des modifications morphologiques et moléculaires des voies dopaminergiques mésolimbiques et mésocorticales. Cependant, la traduction derrière ces changements est encore mal comprise et on ignore si elle affecte de la même manière les mâles et les femelles. Méthodes : Nous avons utilisé le stress de la défaite sociale chronique (CSDS) pour induire des comportements similaires à la dépression chez des souris mâles et femelles. La densité des projections mésolimbiques et corticales a été évaluée par immunohistochimie combinée à une analyse de type Scholl. L’activité de la signalisation dopaminergique a été évaluée à l’aide du marqueur pERK dans l’aire ventrale tegmentale (VTA), le nucleus accumbens (NAc) et le cortex préfrontal médian (mPFC). De plus, des souris transgéniques DAT-IresCRE-RiboTag ont été utilisées afin d’isoler l’ARNm des neurones dopaminergiques, puis une analyse de l'expression différentielle des gènes a été faite par le biais du séquençage des ARNm. Résultats : Le stress social réduit la densité des projections axonales dopaminergiques dans le mPFC, mais pas dans le NAc chez les deux sexes. Les souris susceptibles au stress présentent une diminution de l'expression de pERK dans la VTA et le mPFC, mais une augmentation de la protéine dans le NAc. Nos analyses d’expression différentielle ont révélé des signatures transcriptionnelles spécifiques aux axones et aux somas dopaminergiques associés à la susceptibilité au stress chez les mâles et les femelles. Finalement, nous avons identifié des gènes régulateurs spécifiques aux somas et aux axones, qui sous-tendent l'expression de la susceptibilité au stress chez les mâles et les femelles. Conclusion : Nos résultats indiquent que le stress de la défaite sociale a un impact différent sur les voies mésolimbiques et mésocorticales en modifiant différemment les programmes transcriptionnels qui régulent la plasticité somatique et axonale chez les deux sexes. / Background: Our ability to develop the cognitive strategies required to deal with daily-life stress is regulated by region-specific neuronal networks. Experimental evidences suggest that prolonged stress in mice induces depressive-like behaviors via morpho-functional and molecular changes of the mesolimbic and mesocortical dopaminergic pathways. Yet, the transcriptional programs underlying these changes are still poorly understood and whether they affect males and females similarly is unknown. Methods: We used chronic social defeat stress (CSDS) to induce depressive-like behaviors in male and female mice. Density of the mesolimbic and cortical projections was assessed via IHC combined with Scholl analysis along with the staining of the activity-dependent marker pERK in the ventral tegmental area (VTA), nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). DAT-IRES-CRE-RiboTag transgenic mice were used to isolate from mRNA dopaminergic axons and somas and analyze gene expression through RNAseq. Transcriptional profiles were analyzed through differential expression combined with gene network analyses. Results: Social stress decreased the density of dopaminergic axonal projections to the mPFC but not the NAc of susceptible mice. This was accompanied by decreased pERK expression in the VTA of susceptible but not resilient mice. Our differential expression and gene network analyses revealed soma- and axon-specific transcriptional signatures associated with stress susceptibility and resilience in males and females. We identified soma and axon specific key regulators of sex-specific gene networks underlying the expression of susceptibility and resilience in males and females. Conclusion: Our results indicate that social defeat stress impacts the mesolimbic and mesocortical pathways differently in males and females by altering the transcriptional programs regulating somatic and axonal plasticity differently. These sex-specific changes are likely to underlie the morpho-functional changes induced by CSDS and contribute to the expression of susceptibility or resilience to social stress in both sexes. Read more
|
8 |
Rôles des récepteurs nucléaires Nur77 et Nor-1 et des neuropeptides enképhaline et dynorphine dans les comportements médiés par la dopamine et induits par les psychostimulantsHodler, Céline 19 April 2018 (has links)
Cette thèse démontre que les récepteurs nucléaires Nur77 et Nor-1 ainsi que les neuropeptides dynorphine (DYN) et enképhaline (ENK) sont des facteurs déterminants de la régulation du système dopaminergique. Notre premier manuscrit démontre d’une part que Nur77 et Nor-1 sont très clairement impliqués dans la régulation de l’homéostasie du système dopaminergique et qu’ils y jouent des rôles distincts, voire opposés, dans les conditions basales et dans les réponses comportementales et biochimiques aux psychostimulants. La délétion génétique de Nur77 augmente la proportion des récepteurs D2 en haute affinité (D2high), supprime les stéréotypies et perturbe la persistance de la préférence de place induites par l’administration répétée de psychostimulants. À l’inverse, la délétion de Nor-1 diminue la proportion des récepteurs D2high, atténue les comportements moteurs en réponse à l’amphétamine et supprime la sensibilisation comportementale. La délétion de Nor-1 module également l’expression de la DYN et de l’ENK favorisant ainsi une diminution de la réponse comportementale alors que celle de Nur77 induit l’effet inverse. Ainsi, Nor-1 et Nur77 jouent des rôles opposés, la délétion de Nor-1 tempère les comportements moteurs, celle de Nur77 les exacerbe. Notre second manuscrit démontre d’autre part que la DYN et l’ENK sont toutes deux nécessaires et ont des rôles opposés dans la manifestation des comportements de base médiés par la dopamine. Par contre, dans les conditions d’une exposition répétée aux psychostimulants, la DYN et l’ENK agissent de concert en potentialisant l’exacerbation de l’activité locomotrice et sont donc toutes deux indispensables à la sensibilisation comportementale. Nos travaux révèlent également l’existence d’interactions entre les neurotransmissions enképhalinergique et dynorphinergique et donc entre les deux voies de sortie indirecte et directe des ganglions de la base. Aussi, les neuropeptides DYN et ENK sont modulés différentiellement par la délétion de Nur77 et de Nor-1 et inversement leur délétion régule de manière différente l’expression de ces facteurs de transcription. Ceci suggère l’existence d’une relation de régulation réciproque entre les récepteurs nucléaires et ces neuropeptides. Nur77 et Nor-1 sont donc des régulateurs clés de la transmission dopaminergique et des réponses comportementales aux psychostimulants et ce, principalement via la modulation des récepteurs dopaminergiques et des neuropeptides striataux. / This present study demonstrates that the nuclear receptors Nur77 and Nor-1 and the neuropeptides dynorphin (DYN) and enkephalin (ENK) are crucial in dopaminergic system regulation. On one hand, our first manuscript shows that Nur77 and Nor-1 are deeply involved in the homeostatic regulation of the dopaminergic system and play distinct, mostly opposite roles, in basal dopaminergic neurotransmission and in psychostimulants-induced behavioral and biochemical effects. In particular, Nur77 deletion exacerbates the behavioral effects of both acute and chronic amphetamine (AMPH) administrations while Nor-1 deletion has the opposite effect. In fact, Nur77 deletion favors the upregulation of the proportion of D2 receptors in high affinity state (D2high) and suppress AMPH-induced stereotyped behavior. On the contrary, Nor-1 deletion downregulates the D2high receptors proportion, attenuates locomotor activity in response to chronic AMPH administration and consequently suppresses the development of behavioral sensitization. Nor-1 deletion modulates DYN and ENK expression in a way that promotes decreased behavioral responses to psychostimulants and that is opposite to the effects of Nur77 deletion on these very same neuropeptides. Also, Nur77 deletion suppresses the persistance of cocaine-induced place preference wherese Nor-1 deletion has no effect. Thus, Nor-1 and Nur77 mostly play opposite roles, Nor-1 deletion dampens ambulatory activity whereas Nur77 deletion exacerbates it. On the other hand, our second manuscript shows that DYN and ENK are both necessary and play opposite roles in dopamine-mediated basal behaviors. However, during chronic psychostimulants exposure, DYN and ENK both contribute to the exacerbation of locomotor activity and they are consequently both essential for the expression of behavioral sensitization. Besides, our results highlight a cross-talk between ENK and DYN neurotransmissions and thus between the indirect and direct output pathways of the basal ganglia. Interestingly, we also show that the striatal DYN and ENK deletions could differentially modulate Nur77 et Nor-1 expression. This suggests that the nuclear receptors and the neuropeptides ENK and DYN share an intimate reciprocal regulation relationship. Collectively, our results strongly establish that Nur77 and Nor-1 are key regulators of the dopaminergic neurotransmission and of behavioral responses to psychostimulants and this, mostly via the modulation of dopaminergic receptors and striatal neuropeptides. Read more
|
9 |
Rôle de Lmx1a et de Lmx1b dans la maintenance des circuits dopaminergiques chez la souris adulteGilbert, Catherine 24 April 2018 (has links)
Les facteurs de transcription Lmx1a et Lmx1b jouent un rôle critique dans le développement embryonnaire des progéniteurs des neurones dopaminergiques du mésencéphale, mais leur fonction dans le cerveau adulte reste peu connue. Nous montrons ici que le maintien de l’expression de Lmx1a/b est requis pour la survie des neurones dopaminergiques du mésencéphale chez l’adulte suite à l’inactivation conditionnelle de Lmx1a/b dans ces neurones post-mitotiques. Nous avons découvert que Lmx1a/b contrôlent l’expression de gènes du fonctionnement mitochondrial et que leur ablation entraine un affaiblissement de l’activité de la chaine respiratoire, en une augmentation du stress oxydatif et en des dommages à l’ADN mitochondrial. L’absence postnatale de Lmx1a/b induit également l’apparition d’inclusion d’alpha-synucléine suivie d’une perte progressive des neurones dopaminergiques de la SNc et de la VTA. Ces résultats révèlent le rôle de ces facteurs de transcription dans le développement et fournissent le lien mécanistique entre l’affaiblissement des fonctions mitochondriales, l’agrégation d’alpha-synucléine et la survie des neurones dopaminergiques. Cela suggère également qu’une perturbation de la fonction de Lmx1a et Lmx1b contribuerait à la pathophysiologie de la maladie de Parkinson. / The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the embryonic development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, conditional inactivation of Lmx1a and Lmx1b in postmitotic dopaminergic neurons recreates some of the early cellular features observed in Parkinson’s disease. We found that Lmx1a/b control expression of key genes involved in mitochondrial functions and their ablation results in impaired respiratory chain activity, increased oxidative stress and mitochondrial DNA damage. Postnatal Lmx1a/b deficiency caused axonal pathology characterized by the presence of alpha-synuclein positive inclusions, followed by a progressive loss of SNpc and VTA dopaminergic neurons. These results reveal the key role of these transcription factors beyond early developmental stages and provide mechanistic links between impaired mitochondrial functions, alpha-synuclein aggregation and long-term survival of dopaminergic neurons. The results also suggest the possibility that disturbed function of Lmx1a and Lmx1b contributes to Parkinson’s disease pathophysiology. Read more
|
10 |
Organisation chimioanatomique des afférences pallidales chez le primateEid, Lara 17 July 2024 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2016-2017 / L’élucidation de la position qu’occupent les projections sérotoninergique (5-HT), cholinergique (ACh) et dopaminergique (DA) du tronc cérébral dans l’organisation anatomofonctionelle du globus pallidus externe (GPe) et interne (GPi) au sein des ganglions de la base chez le primate est primordiale à la compréhension de ce système neuronal hautement complexe impliqué dans le contrôle du comportement moteur. Les travaux de recherche consolidés dans la présente thèse rapportent les résultats principalement obtenus chez le singe écureuil (Saimiri sciureus) à l’aide de marquages immunohistochimiques et de quantifications stéréologiques servant à évaluer la distribution régionale et les caractéristiques ultrastructurales des varicosités axonales 5-HT, ACh et DA observées dans le pallidum. Nos données ont permis l’éloboration d’un nouveau modèle du neurone pallidal en tenant compte de la hiérarchie et des caractéristiques neurochimiques de ses entrées synaptiques. Ainsi, l’analyse quantitative en microscopie optique révèle que le GPe et le GPi reçoivent des innervations 5-HT, ACh et DA de densités variables et distribuées de façon hétérogène. Plus particulièrement, le GPe est innervé par 600 000 varicosités 5-HT/mm3 de tissu, 500 000 varicosités ACh/mm3 et 170 000 varicosités DA/mm3. En revanche, le GPi reçoit 600 000 varicosités 5-HT/mm3, 250 000 varicosités ACh/mm3 et 190 000 varicosités DA/mm3. De plus, la 5-HT, l’ACh et la DA ciblent préférentiellement les secteurs correspondant aux territoires fonctionnels associatifs et limbiques du pallidum, suggérant un rôle de ces projections dans la planification du comportement moteur ainsi que dans la régulation de l’attention et de l’humeur. Nos analyses en microscopie électronique révèlent que très peu de ces varicosités axonales établissent un contact synaptique, puisque plus de 70% des varicosités 5-HT, ACh et DA sont complètement dépouvues de jonction synaptique. Ainsi, bien que la 5-HT, l’ACh et la DA seraient en mesure de moduler directement les neurones pallidaux grâce à la transmission synaptique, leur plus grande influence s’opérerait par la transmission volumique, permettant d’influencer à la fois les neurones pallidaux et leurs afférences, principalement du striatum et noyau subthalamique. L’ensemble de ces résultats indique que les projections 5-HT, ACh et DA du tronc cérébral agissent de concert avec les afférences plus robustes en provenance du striatum et du noyau subthalamique. Ces nouvelles données neuroanatomiques positionnent le tronc cérébral en tant qu’acteur important dans l’organisation anatomique et fonctionnelle du pallidum chez le primate et doivent être prises en considération dans l’élaboration de nouvelles approches thérapeutiques visant à contrer les processus neurodégénératifs qui affectent les ganglions de la base, tel que la maladie de Parkinson. / A better understanding of the place that the brainstem serotoninergic (5-HT), cholinergic (ACh) and dopaminergic (DA) projections occupy in the anatomical and functional organization of the primate external (GPe) and internal (GPi) globus pallidus within the basal ganglia is primordial to enhance our comprehension of this complex neuronal system involved in the control of motor behaviors. The present thesis reports novel neuroanatomical findings gathered in the squirrel monkey (Saimiri sciureus) using immunohistochemical labelings and the stereological quantification approach to determine the distribution and ultrastructural features of the 5-HT, ACh and DA axon varicosities observed in the monkey pallidum. Our findings have led to the elaboration of a new model of the pallidal neuron based on a precise knowledge of the hierarchy and neurochemical features of its various synaptic inputs. Quantitative analyses at the light microscopic level reveal that the GPe and GPi receive heterogeneously distributed 5-HT, ACh and DA innervations in variable densities. More precisely, the GPe is innervated by 600,000 5-HT varicosities/mm3 of tissue, 500,000 ACh varicosities/mm3 and 170,000 DA varicosities/mm3. In contrast, the GPi receives 600,000 5-HT varicosities/mm3, 250,000 ACh varicosities/mm3 and 190,000 DA varicosities/mm3. Furthermore, the 5-HT, ACh and DA innervations preferentially target sectors corresponding to the associative and limbic pallidal functional territories, suggesting that these brainstem inputs are involved in the planification of motor behavior, more than in its execution, and in the regulation of attention and mood. Electron microscopic analyses reveal that very few of these axon varicosities establish genuine synaptic contacts, since more than 70% of these axon varicosities are devoid of any synaptic junction. Hence, even though the 5-HT, ACh and DA innervations can directly modulate pallidal neurons through synaptic delivery, the vast majority use volume transmission to influence both pallidal neurons and their major afferents from the striatum and the subthalamic nucleus. Altogether, these results indicate that the 5-HT, ACh and DA projections act in concert with the more robust striatopallidal and subthalamopallidal inputs. Our novel neuroanatomical data suggest that these brainstem projections are ideally positioned to act as major modulators of the primate globus pallidus. The understanding of the relation between the brainstem and the basal ganglia is a prerequisite for the development of new therapeutics avenues for the treatment of neurodegenerative disorders involving the basal ganglia network, such as Parkinson’s disease. Read more
|
Page generated in 0.0537 seconds