• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 14
  • 4
  • Tagged with
  • 60
  • 60
  • 45
  • 27
  • 26
  • 20
  • 16
  • 14
  • 14
  • 14
  • 12
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organisation spatiale et temporelle de l'activité neuronale du cortex moteur chez le singe macaque dans une tâche d'atteinte et de saisie manuelle

Duret, Margaux 24 September 2018 (has links)
Il est classiquement admis que le cortex moteur des primates est organisé topographiquement en lien avec le contrôle des différentes parties du corps. Il a également été suggéré que différentes zones de cette aires corticales pourraient être impliquées dans différents processus de préparation motrice. Suivant cette dernière hypothèse, cette thèse a pour objectif d’étudier les modulations spatiales et temporelles de l’activité neuronale du cortex moteur au cours de la préparation et de l’exécution de mouvements de saisie manuelle. Trois singes ont été entraînés à réaliser une tâche pré-indicée de saisie manuelle. Chez chaque animal, une matrice d’électrodes a été implantée chroniquement dans le cortex moteur. Dans une première étude, nous avons démontré que les modulations d’activité associées à différents processus préparatoires sont localisées dans différentes zones du cortex moteur. Ces zones seraient activées séquentiellement au cours de la préparation motrice suivant une alternance de phases de traitement stationnaire et de propagation dynamique. Dans une seconde étude, nous avons exploré les interactions neuronales par l’utilisation de la mesure de corrélation de variabilité (rsc) entre paires de neurones. Cette deuxième étude a fait ressortir 3 résultats principaux. Les valeurs de rsc sont plus élevées au cours de la préparation du mouvement que lors de son exécution. Elles diminuent avec la distance qui sépare les neurones. Elles sont plus importantes entre interneurones qu’entre neurones supposés pyramidaux. L’ensemble de ces observations ont été discutées en lien avec différentes modèles d’organisation spatiale des aires motrices corticales. / The motor cortex follows a somatotopic organization in which the different body parts are controlled by distinct cortical zones. It has also been proposed that different spatial zones of this cortical area could be involed in distinct processes of motor preparation. Following this latter hypothesis, the objective of this thesis is to study the spatio-temporal modulations of motor cortex activity during movement preparation and execution. Three monkeys have been trained in an instructed delayed reach-to-grasp task. In each animal, a multielectrode Utah array was chronically implanted in the motor cortex to explore the dynamic modulations of neural activity during task performance. In a first study, we demonstrated that the modulations of neural activity related to distinct processes of motor preparation occur at different cortical locations. These locations are activated sequentially during motor preparation through alternating phases of stationary processing and dynamic propagation. In a second study, we analysed the neural interactions using a measure of spike count correlation (rsc) between pair of neurons. We reported 3 main results. Correlations are higher during movement preparation than during execution. They decrease with the distance between neurons. Finally, they are higher bewteen putative interneurons than bewteen putative pyramidal neurones. All these observations are discussed in relation to several models of the spatial organization the motor cortex.
2

Profondeur effective des stimulations magnétiques transcrâniennes et facteurs d'influence /

Gagné, Martin. January 2002 (has links)
Thèse (M.Sc.)--Université Laval, 2002. / Certaines légendes d'ill. sur f. opposé, avec foliation. Bibliogr.: f. 58-62. Publié aussi en version électronique.
3

Caractérisation des projections dopaminergiques visant le cortex moteur chez le rat

Lejeune, Quentin 02 February 2024 (has links)
Le cortex moteur est responsable de la plupart des mouvements volontaires. Cependant, cette appellation de cortex moteur couvre en réalité plusieurs aires corticales chez l'humain, comme le cortex moteur primaire, le cortex prémoteur ou encore le cortex somatosensoriel, interagissant tous les uns avec les autres. Les zones des cortex sont reliées à des régions spécifiques du corps ; comme le CFA (Caudal Forlimb area) situé dans le cortex moteur primaire chez le rat, qui est la zone responsable des mouvements de la patte avant. Le CFA n'est pas la seule zone responsable des mouvements de la patte avant. Des travaux ont montré qu'une seconde zone existe dans le cortex prémoteur chez le primate, et dans le cortex moteur secondaire chez le rongeur. L'apprentissage tout au long de notre vie est possible grâce à la réorganisation des connexions neuronales dans les différents cortex. Ces changements ne sont pas spontanés et semblent être possibles suite au relâchement de la dopamine dans le cortex par les neurones dopaminergiques. Mon mémoire de maitrise porte sur l'exploration de l'origine de ces projections dopaminergiques vers les zones permettant le mouvement des pattes avant chez le rat, ainsi que sur la comparaison entre les projections dopaminergiques visant chacune de ces zones. Dans un premier temps, une brève présentation des différents cortex chez le rat et le primate, ainsi que de leurs fonctions connues sera effectuée, suivie d'une présentation de la dopamine et de ses implications dans la plasticité et le mouvement. Dans un second temps, les résultats obtenus lors de l'injection de différents marqueurs rétrogrades (Virus rétrograde, CTB et retrobeads) seront exposés, et conduiront à la conclusion que les neurones dopaminergiques projetant vers ces cortex se situent dans le mésencéphale, plus précisément dans l'aire ventrale tegmentale (VTA) et dans la substance noire.
4

Paired associative stimulation : influence on brain motor excitability and hand function

Bienjonetti, Isabella 28 September 2023 (has links)
La stimulation associative-pairée (PAS) est utilisée pour induire de manière non invasive des changements plastiques dans le cortex moteur primaire (M1). Les paradigmes de PAS classiques impliquent la combinaison d'une stimulation électrique sur un nerf périphérique et d'une stimulation magnétique transcrânienne (TMS) du M1. La PAS permet d'augmenter ou de réduire l'excitabilité de M1 selon l'intervalle de temps entre les deux stimuli et présente un intérêt pour la neuroréhabilitation. Toutefois, la stimulation électrique périphérique peut être inconfortable pour certaines personnes. Ainsi, nous proposons un nouveau paradigme de PAS excitateur non invasif et indolore qui consiste en la répétition à basse fréquence d'une stimulation magnétique périphérique simple sur le nerf médian suivie 25 ms plus tard d'une TMS du M1 controlatéral. Ce projet visait à tester et comparer, chez des sujets sains, l'influence de ce nouveau paradigme de PAS (PAS25-magnétique) à un paradigme de PAS classique (PAS25) sur M1 et l'excitabilité corticospinale, l'excitabilité des motoneurones spinaux, ainsi que la fonction manuelle. Nos résultats ont révélé une augmentation significative de l'excitabilité corticospinale en temps réel durant la PAS25-magnétique et la PAS25. De plus, nous avons observé une augmentation plus forte et soutenue de l'excitabilité corticospinale ainsi qu'une diminution importante de l'inhibition GABAergique dans M1 chez les répondants à la PAS25-magnétique par rapport aux répondants à la PAS25. Dans tous les cas, aucun changement de la fonction manuelle n'a été détecté, possiblement en raison d'un effet plafond chez les participants sains. Il s'agit de la première étude à tester et à démontrer l'efficacité de ce nouveau paradigme pour moduler l'excitabilité de M1. Par ailleurs, les participants ont perçu la PAS25-magnétique comme plus confortable par rapport au PAS25. Toutefois, des études à plus large échelle seront nécessaires afin d'évaluer plus précisément les effets de la PAS25-magnétique et ses mécanismes sous-jacents. / Paired associative stimulation (PAS) is used to non-invasively induce plastic changes in the primary motor cortex (M1). Conventional PAS paradigms involve the combination of an electrical peripheral nerve stimulation and transcranial magnetic stimulation (TMS) delivered over the primary motor cortex (M1). PAS can either enhance or reduce M1 excitability depending on the paired stimuli timing and is of interest in neurorehabilitation. However, the use of electrical peripheral nerve stimulation may be unpleasant to some people. Thus, in this project, we proposed a new noninvasive and painless excitatory PAS paradigm which consists of delivering low-frequency repetitive pairing of a single peripheral magnetic stimulus over the median nerve 25 ms before a TMS pulse to the contralateral M1. This thesis aimed to assess and compare, in healthy individuals, the influence of this new PAS paradigm (magnetic-PAS25) to the conventional PAS (PAS25) on M1 and corticospinal excitability, spinal motoneuron excitability, as well as hand motor function. Our findings revealed a significant real-time increase of corticospinal excitability during both magnetic-PAS25 and PAS25. Moreover, we observed a stronger and sustained increase of corticospinal excitability along with a prominent decrease of M1 GABAergic inhibition in the responders to magnetic-PAS25 as compared to responders to PAS25. Hand motor function remained unchanged in all cases likely due to a ceiling effect in healthy participants. This is the first study to test and provide evidence that magnetic-PAS25 has the capacity to promote changes in M1 excitability. Importantly, participants reported that magnetic-PAS25 was comfortable and not with the unpleasantness experienced during PAS25. These findings encourage future larger-sampled studies to further evaluate the effects of magnetic-PAS25 and its underlying mechanisms.
5

Caractérisation des différentes étapes de consolidation après apprentissage moteur séquentiel. Etude par la technique de stimulation magnétique transcrânienne répétitive, de limplication du cortex moteur primaire (M1) au cours de ces différentes étapes.

Hotermans, Christophe 11 December 2007 (has links)
Lobjectif de notre travail était triple. Dune part, nous voulions caractériser lévolution de la trace mnésique dans les 48 heures qui suivent lapprentissage explicite dune tâche motrice séquentielle (FTT). Nous nous sommes intéressés plus particulièrement à la période qui suit immédiatement lapprentissage de cette tâche. En effet, cette période, particulièrement vulnérable à une interférence au sens large du terme, semble cruciale dans le processus de consolidation de la trace mnésique. Dautre part, les différentes étapes de lapprentissage moteur ayant été définies, nous voulions étudier le rôle spécifique de M1 au cours de chacune de celles-ci. Pour ce faire, nous avons utilisé la SMTr à faible fréquence que nous avons appliquée à différents délais sur le scalp en regard du cortex moteur primaire controlatéral à la main utilisée pour la tâche. Enfin, quelques études récentes suggérant que la SMTr à haute fréquence pourrait améliorer certaines tâches cognitives et motrices chez le sujet sain comme chez le sujet cérébrolésé, nous avons tenté daugmenter la performance de nos volontaires sains en leur appliquant la SMTr à haute fréquence en regard du cortex moteur primaire directement après lapprentissage de la tâche. Au terme de ce travail nos conclusions sont les suivantes : 1. Le traitement de la trace mnésique fraîche est un processus dynamique qui passe au moins par trois étapes. a. Lors de la première étape, caractérisée par les 30 premières minutes qui suivent lentraînement, la trace mnésique est accessible, plus efficace quà la fin de lentraînement mais fragile aux perturbations extérieures. Une interférence survenant à ce moment peut détériorer le rappel immédiat de la tâche et dans certaines conditions la performance à long terme. b. La seconde étape, caractérisée par les heures qui suivent lentraînement et pendant lesquelles le sujet est éveillé, correspond à une phase de stabilisation de la trace mnésique durant laquelle celle-ci est moins accessible mais plus robuste aux interférences. c. La troisième étape correspond à lamélioration de performance survenant après au moins une nuit de sommeil. Bien que nous nayons pas testé spécifiquement le rôle du sommeil, nous avons montré que 24 et 48 heures après lentraînement, la trace mnésique est optimale et de nouveau accessible lors de lexécution de la tâche. 2. La première étape nest pas dépendante du niveau de performance du sujet. Elle est présente après un premier entraînement mais également 48 heures plus tard après un second entraînement. Il reste néanmoins à préciser si ce gain de performance survenant précocement après lentraînement est toujours présent ou non après plusieurs semaines dentraînement, lorsque le sujet a atteint son niveau de performance maximal. 3. Le rôle de la première étape dans le processus de consolidation à long terme reste à préciser. Dun côté, le gain de performance acquis lors de la première étape (5 et 30 minutes) est proportionnel au gain de performance acquis lors de la troisième étape (après 48 heures). Ces données suggèrent que la première étape reflète une structuration précoce de la trace mnésique. Dun autre côté, cette première étape est partiellement supprimée par la SMTr sans modification de la performance à plus long terme, suggérant que la première et la troisième étape sont au moins partiellement indépendantes. 4. Contrairement à lapprentissage dune tâche motrice simple (Muellbacher et coll. 2002), la consolidation de la trace mnésique survient très précocement pendant la phase dacquisition de la tâche. En effet, jusquà présent aucune interférence, quil sagisse dune nouvelle séquence apprise juste après la première (Walker et coll. 2003a, Korman et coll. 2007) ou dune SMTr (nos données, Robertson et coll. 2005), na permis de supprimer complètement la trace mnésique dune tâche motrice séquentielle. Le participant ne revient jamais à létat « naïf », initial, et dans le pire des cas, son niveau de performance est superposable à celui de la fin de lentraînement. 5. Le cortex moteur primaire intervient dans les étapes très précoces (30 premières minutes) de la consolidation de la trace mnésique qui succède à la phase dacquisition. La SMTr appliquée au niveau de M1 controlatéral à la main entraînée réduit la performance du sujet uniquement si elle est appliquée immédiatement après lentraînement et non 4 et 24 heures plus tard. Labsence de détérioration de la performance à ces 2 derniers délais démontre quil sagit dun effet spécifique de la SMTr sur la trace mnésique et non simplement dune réduction de la vitesse de frappe liée à une inhibition relative de la région cérébrale responsable de lexécution du mouvement. De plus, labsence deffet de la SMTr lorsque celle-ci est appliquée au niveau du cortex occipital immédiatement après lentraînement prouve quil sagit dun effet spécifique de la SMTr au niveau de M1. 6. La SMTr à haute fréquence appliquée immédiatement après lentraînement a le même effet que la SMT à basse fréquence sur lévolution de la trace mnésique au cours des 48 premières heures. Elle réduit lamélioration observée 30 minutes après lentraînement sans modifier la performance 48 heures plus tard. Cet effet délétère précoce potentiel sur lapprentissage moteur doit être pris en compte lors des études utilisant la SMT à haute fréquence à visée thérapeutique et en particulier en réhabilitation motrice chez les sujets cérébrolésés dautant quil nexiste actuellement pas de recommandation de sécurité en ce qui concerne la SMTr à haute fréquence chez ces patients. Nous avons donc démontré lexistence dune phase précoce (5 à 30 minutes après lentraînement) et transitoire (absente 4 heures après lentraînement) au cours de laquelle la performance qui suit un entraînement unique saméliore (« early boost »). La détérioration partielle de cette amélioration transitoire de performance par la SMTr suggère quà cette phase, la trace mnésique est distribuée dans un réseau cérébral incluant M1. Par contre, labsence de détérioration ultérieure de la performance (48 heures) et labsence deffet de la SMTr à 4 heures et 24 heures suggèrent que la consolidation dune tâche motrice récemment apprise dépend de circuits cérébraux cortico-cérébelleux et cortico-striataux dans lesquels M1 ne jouerait pas un rôle critique (Robertson et coll. 2005, Doyon et Benali 2005, Peigneux et coll. 2006). Il est possible que dans les premières minutes qui suivent un apprentissage séquentiel, les réseaux neuronaux impliqués dans cet apprentissage soient activés de façon globale (Albouy et coll. 2006). Dans ces conditions, la participation de M1 ne serait pas spécifique de la séquence apprise. Les corrélats cérébraux de cette phase devraient être étudiés en utilisant limagerie par résonance magnétique fonctionnelle (IRMf, voir perspectives).
6

Organisation fonctionnelle du cortex moteur primaire liée au contrôle dynamique d'une synergie musculaire interarticulaire : études TMS du modèle de la pince pouce/index avec mouvements du poignet

Gagné, Martin 12 April 2018 (has links)
Ce doctorat s'est intéressé à l'organisation fonctionnelle du cortex moteur primaire (M1) impliqué dans une synergie musculaire interarticulaire. La question de recherche était de savoir si le contrôle d'une synergie proximo-distale était assuré par les connexions synaptiques facilitatrices existant entre zones M1 contrôlant les muscles proximaux et distaux. L'originalité du travail repose sur le fait que cette question est traitée pour la première fois au cours d'une tâche motrice dynamique. Le modèle expérimental utilisé est le maintien de la pince pouce/index pendant des mouvements cycliques de flexion/extension du poignet. L'hypothèse de travail propose que la pince et la flexion du poignet, forment une synergie proximo-distale assurée par les connexions entre zones M1 des muscles fléchisseurs du poignet et du muscle abducteur de l'index, (FDI, First Dorsal Interosseus préactivé pour le maintien de la pince). Le recrutement de ces connexions augmenterait l'excitabilité corticale du FDI, potentialisant ainsi l'efficacité de la commande motrice distale. Les simples et doubles stimulations magnétiques transcrâniennes de M1 ont permis de tester l'excitabilité corticospinale et le niveau d'inhibition intracorticale (SICI) du FDI chez des personnes en santé (études 1 et 2) et chez une patiente désafférentée (étude 3). Les résultats des études 1 et 2 indiquent respectivement que l'excitabilité corticospinale du FDI est augmentée et que sa SICI est réduite pendant la flexion du poignet comparativement à l'extension, que les mouvements soient actifs ou passifs. Comme la SICI teste des processus strictement corticaux, il est proposé que la facilitation observée (fléchisseurs du poignet - FDI) s'organise en partie dans les circuits de M1. De plus, la facilitation observée en passif suggère une contribution des afférences proprioceptives du poignet. Les résultats de l'étude 3 (désafférentation) où l'effet n'est observé qu'en actif, suggèrent que les seules informations proprioceptives n'expliquent pas la facilitation proximo-distale et qu'une combinaison avec la commande motrice proximale est requise. Ces observations appuient l'idée du contrôle moteur cortical intégré de la pince pouce/index au cours de mouvements cycliques du poignet. Cette tâche dynamique serait une synergie musculaire fonctionnelle représentée au sein de M1 et contrôlée par la perméabilité phase-dépendante des informations sensorielles liées au mouvement.
7

Rôle de DSCAM dans le développement normal du cortex moteur et de la voie corticospinale

D. Laflamme, Olivier 24 April 2018 (has links)
DSCAM est exprimé dans le cortex lors du développement et sa mutation altère l’arborisation dendritique des neurones pyramidaux du cortex moteur. Considérant que les souris DSCAM2J possèdent des problèmes posturaux et locomoteurs, nous émettons l’hypothèse que DSCAM est impliqué dans le fonctionnement normal du cortex moteur et de la voie corticospinale. Comparées aux souris contrôles, les souris DSCAM2J vont présenter des problèmes moteurs à basse vitesse et enjamber un obstacle presque normalement à vitesse intermédiaire. Le traçage antérograde de la voie corticospinale révèle un patron d’innervation normal dans le tronc cérébrale et la moelle épinière. Des microstimulations intracorticale du cortex moteur évoque des réponses électromyographiques dans les membres à un seuil et une latence plus élevé. Par contre, une stimulation de la voie corticospinale dans la médulla évoque des réponses électromyographies à un seuil et une latence similaire entre les deux groupes, suggérant une réduction de l’excitabilité du cortex moteur. / DSCAM is expressed in the developing motor cortex, and its mutation alters the dendritic tree arborization of cortical neurons in the motor cortex. Given that DSCAM mutant mice exhibit postural and locomotor dysfunctions, we hypothesized that DSCAM might impair the normal functioning of the motor cortex and its corticospinal tract. In comparison to wild-type mice, DSCAM mutants displayed motor impairments at slow walking speed while stepping over an obstacle almost normally at moderate walking speed. Anterograde tracing of the corticospinal tract revealed a normal pattern of innervations at the brainstem and spinal cord levels. Intracortical microstimulations of the motor cortex evoked electromyographic responses in forelimb and hindlimb muscles at higher thresholds and longer latencies in DSCAM mutants. In contrast, stimulations of the corticospinal tract at the level of the medulla evoked electromyographic responses at similar thresholds and latencies in both mouse, thus suggesting a reduced excitability of their motor cortex.
8

Effects of hemicerebellectomy on the excitability of the motor cortex / Effets de l'hémicérébellectomie sur l'excitabilité du cortex moteur

Oulad Ben Taib, Nordeyn 27 April 2011 (has links)
Il est bien établi que le cervelet joue un rôle déterminant sur le plan de la coordination motrice et de la préparation du mouvement. Ces rôles nécessitent impérativement une collaboration étroite entre le cervelet et le cortex moteur. La nature de ces interactions demeure mal comprise. Au cours des travaux expérimentaux présentés ici, nous nous sommes intéressés aux interactions entre le cervelet et le cortex moteur chez le rat Wistar en vue de mieux cerner les relations entre le cervelet et le cortex moteur. La mise en lumière de ces mécanismes pourrait avoir un impact sur la compréhension des fonctions du cervelet et la prise en charge des patients présentant une atteinte cérébelleuse. Dans un premier travail, nous avons étudié les interactions entre le noyau interposé du cervelet et l’excitabilité de la moelle épinière. Les effets de l’administration de tétrodotoxine (TTX, bloqueur des canaux sodiques) sur le recrutement du réflexe H ont été investigués. L’administration intranucléaire de TTX a altéré la courbe de recrutement du réflexe H sans en affecter le seuil ou l’amplitude maximale (rapport H max/M max inchangé avant et après l’administration de TTX). L’amplitude des ondes F était déprimée, avec une persistance de ces ondes diminuée et des rapports F moyen/M moyen réduits. Nous avons observé que la stimulation répétitive concomitante du nerf sciatique corrige la dépression de la courbe de recrutement du réflexe H, sans agir sur la dépression de l’onde F. Ces premiers résultats (1) ont montré que les canaux sodium sensibles à la TTX au niveau des noyaux interposés du cervelet modulent le recrutement du réflexe H, et (2) ont révélé l’existence d’une interaction entre les canaux sodium sensibles à la TTX au niveau des noyaux interposés du cervelet et l’activité afférente répétitive, ce qui n’était pas décrit jusqu’à présent. Nous avons ensuite analysé le rôle du cervelet sur la modulation des efférences corticomotrices lors d’une stimulation électrique répétitive du nerf sciatique chez le rat. Des travaux antérieurs ont en effet montré qu’une stimulation somatosensitive soutenue induit une augmentation de l'intensité de la réponse du cortex moteur de rongeurs par un mécanisme de plasticité à court terme. Jusqu'à présent, il a été considéré que l'augmentation de l’intensité des efférences motrices après la stimulation de nerf périphérique correspond à une plasticité dépendante uniquement du cortex sensorimoteur. Un total de 6 groupes de rats a été investigué. Nous avons analysé la réponse évoquée par la stimulation électrique du cortex moteur droit avant (condition basale) et après la stimulation électrique périphérique du nerf sciatique gauche chez des rats contrôles ne présentant aucune lésion cérébelleuse (pas d’intervention cérébelleuse) et chez des rats recevant une infusion d’une solution de Ringer via une sonde de microdialyse implantée dans les noyaux cérébelleux gauches. De plus, nous avons examiné les effets de (1) l'administration d'éthanol (20 mmol/L) dans les noyaux cérébelleux gauches; (2) l'administration de TTX dans les noyaux cérébelleux <p><p>gauches; (3) la stimulation électrique par stimulation cérébelleuse profonde (stimulation des noyaux interposés) sur le côté gauche; et (4) la stimulation électrique des noyaux cérébelleux du côté controlatéral. Pour la stimulation périphérique, tous les animaux ont reçu 1 heure de stimulation électrique. Les trains de stimulation ont consisté en cinq stimuli (durée de 1 stimulus: 1 ms) à une fréquence de 10 Hz. Pendant la stimulation du cortex moteur, les amplitudes pic-à-pic des réponses du muscle gastrocnémien gauche ont été analysées. Le seuil moteur (motor threshold :MT) a été défini comme l'intensité la plus basse induisant au moins 5 réponses avec une amplitude >20 µV sur 10 réponses évoquées. L'intensité utilisée était à 130 % du seuil moteur (130 % de MT). Dans la condition basale (avant la stimulation répétitive), les amplitudes des réponses motrices sont similaires dans les six groupes de rats. Chez les rats sans intervention cérébelleuse, la stimulation électrique périphérique a été associée à une augmentation significative de l’amplitude des réponses corticomotrices par rapport à la condition basale. Chez les rats avec infusion de Ringer, les réponses motrices ont augmenté de manière similaire par rapport à la condition basale. L'administration d'éthanol dans le cervelet a empêché la majoration de la réponse ipsilatérale. La même observation a été faite après l'infusion de TTX et après la stimulation électrique des noyaux cérébelleux du côté gauche. Cependant, la stimulation électrique des noyaux cérébelleux du côté droit n'a pas détérioré la modulation des efférences corticomotrices associée à la stimulation répétitive du nerf sciatique. Nous avons ensuite analysé les effets de l’hémicérébellectomie sur la modulation des activités des efférences du cortex moteur associée à la stimulation électrique répétitive du nerf sciatique chez le rat. L’hémicérébellectomie constitue un modèle de lésion aigüe étendue du cervelet. L’hémicérébellectomie a bloqué la majoration de la réponse corticomotrice, confirmant que le cervelet est un acteur-clé de cette forme de plasticité à court terme. Nous avons examiné les réflexes cutanéomusculaires au niveau du muscle plantaire des rats (1) en réponse à la stimulation cutanée isolée, et (2) en réponse à une association de stimuli cutanés avec des trains de stimuli de haute fréquence appliqués sur le cortex moteur controlatéral, avant et après la stimulation répétitive périphérique. Après une période de stimulation répétitive périphérique, l’amplitude des réponses cutanéomusculaires augmente lorsque des trains de stimulation de haute fréquence sont appliqués au niveau du cortex moteur controlatéral. Les réponses cutanéomusculaires ont aussi été examinées avec le même paradigme après hémicérébellectomie. Nous avons observé que la majoration de l’amplitude des réponses cutanéomusculaires associée aux trains de stimulation de haute fréquence après la période de stimulation répétitive périphérique a été bloquée par l’hémicérébellectomie. Nos résultats suggèrent donc que les voies passant par le cervelet sont impliquées dans le calibrage des réponses cutanéomusculaires et qu’une lésion cérébelleuse aigüe étendue altère cette fonction cérébelleuse. <p><p>Dans un travail suivant, nous avons analysé les effets de la stimulation répétitive à basse fréquence du cortex moteur (LFRSM1) (1) sur l'inhibition interhémisphérique (IHI), et (2) sur la modulation des réponses cutanéomusculaires chez des rats présentant une ablation de l’hémicervelet gauche. L’IHI a été évaluée par la méthode des stimulations pairées (technique de conditionnement), en utilisant un stimulus de conditionnement (CS) à M1 suivi par un stimulus test (TS) controlatéral. Nous avons mis en évidence que les LFRSM1 ont réduit l’IHI. La combinaison de LFRSM1 avec une stimulation répétitive périphérique a augmenté significativement l’amplitude des réponses cutanéomusculaires évoquées ipsilatéralement à l’ablation de l'hémicervelet. L'augmentation de l'intensité de la réponse cutanéomusculaire était corrélée à la réduction de l’IHI. Cependant, l’excitabilité du pool des motoneurones de la corne antérieure, évaluée par l’onde F, est restée inchangée. La conjonction des LFRSM1 avec la stimulation répétitive périphérique peut donc être utilisée pour rétablir la capacité du cortex moteur de moduler l'intensité des réponses cutanéomusculaires en cas de vaste lésion cérébelleuse unilatérale. Cette étude souligne pour la première fois le rôle potentiel des voies transcalleuses dans les déficits de la modulation corticomotrice des réponses cutanéomusculaires controlatérales à la lésion cérébelleuse aiguë étendue. Nous avons ensuite étudié les effets des stimulations électriques prémotrices de basse et de haute fréquence sur les réponses corticomotrices conditionnées, sur la facilitation intra-corticale (ICF) et sur l’excitabilité spinale chez des rats hémicérébellectomisés du côté gauche. Des trains de stimulations ont été appliqués dans la région préfrontale rFR2 (équivalente des aires prémotrices et motrices supplémentaires chez les primates) à une fréquence de 1 Hz (stimulation de basse fréquence: LFS) ou de 20 Hz (stimulation de haute fréquence: HFS). Des stimuli tests sur le cortex moteur ont été précédés par des stimuli conditionnant sur le nerf sciatique controlatéral (2 intervalles inter-stimuli – ISI- ont été étudiés: 5 ms et 45 ms): (A) à un ISI de 5 ms, le conditionnement augmente les amplitudes des potentiels évoqués moteurs au niveau du cortex moteur gauche. Cette facilitation afférente est majorée si elle est précédée par des trains de stimulation appliqués sur l’aire rFR2 ipsilatérale, et la stimulation HFS a un effet plus important que la stimulation LFS. La facilitation est plus faible au niveau du cortex moteur droit, aussi bien pour la stimulation LFS que pour la stimulation HFS, (B) à un ISI de 45 ms, les potentiels moteurs conditionnés sont déprimés en comparaison aux réponses non conditionnées (mécanisme d’inhibition afférente). Après une stimulation LFS, le degré d’inhibition est inchangé. Au niveau basal, l’inhibition est majorée au niveau du cortex moteur droit. De manière intéressante, l’inhibition afférente diminue significativement à la suite de la stimulation HFS, (C) l’ICF est déprimée au niveau du cortex moteur droit, mais est sensible à la stimulation LFS et HFS. Ces résultats (1) confirment la majoration de l’inhibition au niveau du cortex moteur controlatéral à l’ablation de <p><p>l’hémicervelet, (2) démontrent pour la première fois que le cervelet est nécessaire pour la modulation fine des amplitudes des réponses corticomotrices consécutives à la stimulation nerveuse périphérique, (3) montrent que l’application de stimulation LFS ou HFS ne modifie pas les anomalies de l’excitabilité du cortex moteur pour des ISI courts, et (4) suggèrent que pour des ISI longs, la stimulation HFS pourrait avoir des propriétés intéressantes pour la modulation de l’inhibition afférente en cas de lésion cérébelleuse étendue. Etant donné que le cervelet apparaît comme un modulateur-clé de l'activité du cortex moteur, permettant la maintenance et la modulation fine des décharges du cortex moteur, et qu’un des défauts élémentaires associés aux lésions cérébelleuses aiguës est une excitabilité réduite du cortex moteur controlatéral, nous avons évalué les effets des trains de stimulation anodale transcraniale directe (tDCS), qui produisent des changements (polarité-dépendant) des potentiels de membrane, chez des rats hémicérébellectomisés. Les trains de tDCS ont contrecarré les altérations de l’excitabilité corticomotrice controlatérale à l'ablation de l’hémicervelet. Toutefois, tant la dépression du réflexe H, que la dépression de l’onde F, sont restées inchangées avec la tDCS. Les réflexes cutanéomusculaires sont aussi restés inchangés. Les trains de tDCS ont antagonisé l’hypoexcitabilité corticomotrice induite par la stimulation à haute fréquence du noyau interposé. Nos résultats montrent que les trains de tDCS ont la capacité de moduler l’excitabilité du cortex moteur après dysfonction aigüe du cervelet. En particulier, en plaçant le cortex moteur à un niveau approprié d’excitabilité, les trains de tDCS pourraient permettre au cortex moteur de devenir plus réactif aux procédures d’apprentissage ou d’entraînement. Ceci a un potentiel clinique direct pour nos patients présentant une lésion cérébelleuse aigüe étendue. Nos travaux soulignent l’importance jouée par le cervelet dans la modulation des réponses corticomotrices chez le rat Wistar, tant pour le maintien d’un niveau approprié d’excitabilité que pour une réponse adéquate à des stimuli périphériques ou centraux. Nos résultats montrent pour la première fois que la tDCS pourrait constituer une technique de thérapie pour des patients cérébelleux présentant une dépression de l’excitabilité du cortex moteur. L’hypothèse que la tDCS pourrait contrecarrer l’hypoexcitabilité corticale chez le patient ataxique mérite d’être testée. Cette technique est peu invasive et commence à être utilisée chez l’homme.<p> / Doctorat en Sciences médicales / info:eu-repo/semantics/nonPublished
9

Les anomalies d'excitabilité du cortex moteur primaire et leurs relations avec les troubles locomoteurs dans la maladie de Parkinson / Relationship between motor mortex excitability and locomotor disorders in Parkinsonian patients

Vacherot, François 27 September 2010 (has links)
Les travaux réalisés lors de cette thèse ont porté sur le cortex moteur et les troubles de la marche de patients atteints de la maladie de Parkinson (MP). L’atteinte fonctionnelle des aires motrices corticales dans la MP et leur implication dans la physiopathologie des désordres moteurs a surtout été établie à partir de données issues des aires corticales des membres supérieurs. L’analyse électrophysiologique par stimulation magnétique transcranienne réalisée dans ces travaux de thèse a exploré les aires motrices corticales des membres inférieurs et révélé des troubles d’excitabilité différents de ceux classiquement décrits dans les aires corticales des membres supérieurs. En effet, il ressort principalement de l’étude sur le membre inférieur une diminution de la facilitation intracorticale (FIC) alors que la littérature décrit essentiellement pour les aires motrices corticales des membres supérieurs une altération des mécanismes inhibiteurs intracorticaux. Les anomalies corticales mises en évidence sont corrélées avec les paramètres locomoteurs affectés par la maladie, longueur d’enjambée et vitesse de marche. L’analyse des patients avec et sans traitement a permis de montrer que la supplémentation dopaminergique agit à la fois au niveau cortical et locomoteur normalisant partiellement les déficits observés. Les anomalies de FIC des aires corticales motrices des membres inférieurs paraissent donc être impliquées dans la physiopathologie des troubles de la marche dans la MP et pourraient de ce fait constituer un paramètre d’évaluation et un objectif thérapeutique de choix. L’utilisation de la stimulation magnétique transcranienne répétitive couplée à la neuronavigation permettrait d’explorer cette dernière piste. / This thesis aims to study the relationships between motor cortex impairment and locomotor disorders in Parkinsonian patients (PP). Most of the previous studies have focused on the upper limb cortical areas showing the existence of an imbalance in cortical excitability, which mainly evolves towards a state of impaired intracortical inhibition. However, just a few studies have been devoted so far to the exact cortical abnormalities responsible for Parkinsonians’ gait disorders. The transcranial magnetic stimulation (TMS) studies presented here demonstrate that the excitability abnormalities occurring in PP differ between the cortical areas associated with the lower and upper limbs, since defective intracortical facilitation (ICF) processes were mainly detected in the lower limbs cortical areas. Furthermore, these specific excitability abnormalities identified seem to be involve in the genesis of the hypokinetic locomotor component since correlations were established between the ICF level and the shortened stride length (and by correlates, with the reduced velocity). Patients were assessed with and without dopaminergic substitution treatment (DST). We found that DST modified significantly both the cortical excitability abnormalities and the defective locomotor parameters. Impaired facilitatory processes in lower limbs cortical areas may be involved in the pathophysiology of gait disorders in PD. This hypothesis should be addressed in an experiment coupling repetitive TMS and neuronavigation.
10

Stimulations du cervelet pour le traitement des dyskinésies induites par la lévodopa dans la maladie de Parkinson / Stimulations of the cerebellum for the treatment of levodopa-induced dyskinesias in Parkinson's disease

Bousquet Combes, Adèle 07 June 2017 (has links)
La lévodopa est actuellement la thérapie de référence pour les patients atteints de la maladie de Parkinson et permet le rétablissement artificiel des niveaux de dopamine. Cependant, ce traitement s'accompagne de mouvements involontaires anormaux invalidants, ou dyskinésies. Au cours de ma thèse, j'ai étudié l'implication des cellules de Purkinje de la région cérébelleuses crus II, via les voies cérébello-thalamo-cortico-striatale et cérébello-thalamo-striatale, dans l'émergence et le traitement des mouvements involontaires anormaux oro-linguaux induits par la lévodopa dans un modèle murin de la maladie de Parkinson. Mes résultats suggèrent que la stimulation chronique et spécifique des cellules de Purkinje par une technique d'optogénétique semble à même de corriger et de prévenir le phénotype dyskinétique et ce en association avec une modulation de l'activité du noyau thalamique intralaminaire parafasciculaire, du cortex moteur primaire oral et du striatum dorsal. Les voies cérébello-thalamo-cortico-striatale et cérébello-thalamo-striatale semblent ainsi impliquées dans le traitement correctif et préventif des dyskinésies induites par la lévodopa dans la maladie de Parkinson. / Levodopa is currently the gold standard treatment for Parkinson’s disease patients and artificially restores dopamine levels. However, it induces debilitating abnormal involuntary movements, or dyskinesia. During my thesis, I assessed the involvement of the cerebellar crus II region Purkinje cells, via the cerebello-thalamo-cortico-striatal and cerebello-thalamo-striatal pathways, in the onset and the treatment of levodopa induced oro-lingual abnormal involuntary movements, in a mouse model of Parkinson’s disease. My results suggest that the chronic and specific stimulation of Purkinje cells, using optogenetics, seems able to correct and prevent the dyskinetic phenotype, together with modulations of the activity of the parafascicular intralaminar thalamic nucleus, primary oral motor cortex and dorsal striatum, thus arguing for the involvement of the cerebello-thalamo-cortico-striatal and the cerebello-thalamo-striatal pathways in the corrective and preventive treatment for levodopa induced dyskinesia in Parkinson’s disease.

Page generated in 0.0721 seconds