Return to search

Etude de la fiabilité des mesures électriques par la microscopie à force atomique sur couches diélectriques ultra-minces : Développement d'une technique de pompage de charge résolue spatialement pour la caractérisation des défauts d'interface / Study of the reliability of the electrical measurements obtained by atomic force microscopy : Development of a charge pumping method with spatial resolution

Les progrès rapides de la microélectronique sont liées à la miniaturisation du transistor MOS. Pour limiter les courants de fuite, SiO2 a déjà été remplacé par HfO2.mais de nouveaux diélectriques de grande constante diélectrique (high-k) devront être intégrés pour poursuivre cette progression. Le microscope à force atomique (AFM) en mode Conductive-AFM (C-AFM) est aujourd'hui un outil incontournable pour la caractérisation électrique des diélectriques en couche mince à l'échelle nanométrique. Dans nos travaux, nous avons cherché à étudier les limites du C-AM. Le C-AFM consiste à utiliser une pointe AFM comme électrode supérieure afin de faire des mesures de type I(V) ou des cartographies de courant. Nous avons cherché à identifier le phénomène qui conduit à la dégradation de la couche diélectrique par l'application d'une tension de pointe positive, matérialisée par la déformation de la surface. Nous avons montré qu'il s'agissait d'un effet thermique due à la forte densité de courant, ne s'apparentant pas à la DBIE observée sur dispositif, et pouvant aller jusqu'à la détérioration du substrat à l'interface. Ce phénomène, sans en être la conséquence, est largement favorisé par la présence d'eau. Ceci confirme qu'il est préférable de réaliser les caractérisations électriques sous ultra-vide malgré les contraintes expérimentales. Les études du diélectriques sont ainsi compromises puisque le mode de dégradation est en partie propre à la technique AFM et ne permet pas aisément d'extrapoler le comportement du matériau intégré dans un dispositif. De plus, l'étude statistique la dégradation de la couche (Weibull), couramment utilisée, est affectée par un biais d'interdépendance. De la même façon, la modélisation de la conduction à travers la couche doit être utilisée avec précaution, car la surface du contact électrique pointe-diélectrique demeure un paramètre incertain. La technique de pompage de charges permet de caractériser les pièges à l'interface oxyde/semi- conducteur en les sollicitant par l'application d'une tension de grille périodique. Elle permet d'extraire la densité d'état Dit(E) les sections efficaces de capture (σ(E)), mais ne donne pas d'information sur leur répartition spatiale. Nous avons donc adapté cette technique à la microscopie champ proche, la pointe AFM conductrice faisant office de grille. Sur des transistors dépourvus de grille spécialement préparés pour l’occasion, nous avons pu montrer la faisabilité de la technique, en accord satisfaisant avec les mesures macroscopiques. Nous mesurons un signal que nous associons à un courant pompé. Cependant, le signal est déformé comparativement aux mesures macroscopiques. Un modèle physique reste à développer puisque dans notre cas, les charges minoritaires doivent traverser depuis la source et le drain un espace non polarisé par la grille. Par la suite, un dispositif de cartographie des défauts d'interface, éventuellement résolue en énergie, pourra être développé. / The rapid progress of the microelectronic is obtained by the strong reduction of the dimensions of the MOS transistor. In order to reduce the leakage currents SiO2 is nox replaced by HfO2, but new dielectrics with a high permittivity (high-k) will have to be integrated in the future so that the progession continues. The atomic force microscope (AFM) in Conductive-AFM (C-AFM) mode is an ideal tools for the electrical characterization of thin oxide films at the nanometric scale. In our work, we have tried to study the limits of the C-AFM. C-AFM consists in using an AFM tip as a top electrode in order to perform Intensity-Current (I-V) curves or mapping the current. We have tried and identify the phenomenon which lead to the degradation of the dielectric layer during the application of the positive voltage bias on the tip, which results in a deformation of the surface under study. We have shown that it is a thermal effect due to a large density of current, which is different from dielectric induced breakdown epitaxy (DBIE) observed on the devices, and which may even lead to the degradation of the susbstrate at the interface. This phenomon is favored by the presence of water on the surface although it is not its consequence. This confirms that such electrical measurements should be performed in ultra-high vacuum in spite of the consequences in terms of complexity of the measurement setup. As a consequence, the study of the dielectric material are questionned since the degradation process is partly due to the AFM technique itself and does not allow to extrapolate easily the behaviour of the integrated device. Moreover, the statistical study of the degradation of the layer (Weibull), commonly used, is affected by a bias (measurements are interdependent). In the same way, the modeling of the conduction through the layer must be questionned because the surface of the electrical contact between the tip and the dielectric layer remains a very variable parameter. The charge pumping technique, which consists in caracterizing the traps at the semiconductor / dielectric interface by filling/emptying them with the application of an alternating gate voltage. It allows to extract the states density (Dit(E) and the capture cross section (σ(E)) but does not provide any information about their repartition on the interface. So, we have adapted this technique to the scanning probe microscopy with the conducting AFM probe as a gate. Using gate-less transistors fabricated in the frame of this work, we have demonstrated the feasability of this technique with a satisfying agreement with macroscopic measurements. We are able to measure a signal that can be related to charge pumping. However, the signal is distorted compared to macroscopic measurements. Modeling is needed because in our case, minority carriers must travel from source to drain via a non polarised area. As a perspective, an energetically resolved method to map the interfacial defects might be developed.

Identiferoai:union.ndltd.org:theses.fr/2014ISAL0133
Date16 December 2014
CreatorsGrandfond, Antonin
ContributorsLyon, INSA, Gautier, Brice, Militaru, Liviu-Laurentiu
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds