Cette thèse s'articule autour de la reconstruction géométrique de formes. Plusieurs méthodes, basées sur les diagrammes de Voronoï, sont proposées pour la reconstruction automatique d'objets naturels. L'application principale est la modélisation et l'imagerie géologique. Une première méthode permet la reconstruction de volumes et surfaces géologiqu- es à partir de données incomplètes et hétérogènes : données ponctuelles sur des affleurements, portions de contours cartographiques, sondages, coupes incomplètes ou interprétées, modèles numériques de terrains... L'idée majeure de la méthode consiste à assembler les objets différents selon leurs proximités, en utilisant le diagramme de Voronoï de ces objets. Les diagrammes de Voronoï sont des structures géométriques permettant de partitionner l'espace en régions d'influence. En pratique toutes les données sont discrétisées en un ensemble de points colorés, les couleurs représentant ici les caractéristiques géologiques ou géophysiques des données, que nous souhaitons imager. La partition "colorée" de ces points nous donne une première solution topologique au problème de reconstruction. Elle nous fournit en outre, une représentation du bord de l'objet géologique et de son intérieur. L'utilisation de courbes et de surfaces déformables sous contraintes (tension, courbure et respect de la topologie initiale) permet ensuite d'obtenir des interfaces plus lisses et plus conformes. Une étape particulière permet de prendre en compte des surfaces de discontinui- té comme les failles. Afin de représenter un objet S, non plus par des éléments discrets (polyèdres de Voronoi), mais par les valeurs positives d'une fonction continue, nous avons introduit une nouvelle méthode. L'objectif de la méthode est de définir une fonction interpolante s telle que l'ensemble des zéros de s passe exactement par les données de départ et soit une approximation cohérente et lisse de S par ailleurs. Dans un premier temps nous définissons, une fonction caractéristique locale en chaque donnée (point, contour...) et l'objet volumique final résulte alors d'une interpolation de ces fonctions.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00832483 |
Date | 14 December 1998 |
Creators | Nullans, Stéphane |
Publisher | Université de Nice Sophia-Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds