• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hiérarchisation et facettisation de la représentation par segments d'un graphe planaire

Moreau, Jean Michel 12 October 1990 (has links) (PDF)
L'organisation structurée (graphe avec hiérarchies et propriétés sémantiques) d'objets du plan implique plusieurs opérations complexes qui doivent être effectuées en toute sécurité de cohérence topologique. La précision inhérente d'une machine étant nécessairement limitée, il faut souvent recourir à une arithmétique exacte couteuse. Cette thèse présente, à partir de travaux liés à la réalisation du module de facettisation d'un simulateur de vol industriel, une solution permettant l'utilisation d'une arithmétique mixte, de précision arbitraire et de coût très inférieur statistiquement a la solution exacte. On y trouve aussi l'unification des méthodes de construction d'un diagramme de Voronoi, d'une triangulation de Delaunay pour un nuage de points dans le plan et de la triangulation contrainte de Delaunay de la représentation par segments d'un graphe planaire, autour d'une technique incrémentale optimale, fondamentalement plus simple que la méthode diviser-pour-résoudre classique. La technique incrémentale permet, par ailleurs, de donner un algorithme linéaire et très simple de construction du diagramme de Voronoi et de la triangulation de Delaunay d'un nuage de points situes sur la frontière d'un polygone monotone ou convexe.
2

Découplage de la structure et de l'apparence pour la synthèse de détail par l'exemple

Frasson, Marie-Claude 24 June 2005 (has links) (PDF)
Un des buts de l'infographie est de produire des images réalistes. Pour cela, des artistes créent des modèles géométriques complexes ornés de textures détaillées. Malheureusement, selon l'application visée et les ressources disponibles, il doivent souvent "prendre des raccourcis" en répétant des textures ou en utilisant des modèles simples dont les détails sont simulés par une série de couches d'apparence. Afin de créer des objets 3D réalistes, la meilleure source d'inspiration est le monde réel lui-même. Dans ce contexte, nous proposons d'aider l'artiste à créer ces couches d'apparence à partir de l'analyse d'exemples. Nous nous attaquons tout d'abord à la couche de texture couleur, et plus particulièrement aux textures structurées.<br />En effet, ces dernières sont difficilement reproductibles de manière automatique et leur répétition visuelle est gênante pour l'observateur. Afin de réussir à propager de telles textures à partir d'un exemplaire donné, nous proposons de découpler la structure de l'apparence.<br />Nous traitons le problème tout d'abord sous un aspect géométrique. Les textures structurées sont représentées par un maillage 2D qui est analysé afin d'en extraire une description statistique compacte menant à la création d'un générateur permettant de reproduire la structure originelle à volonté. L'utilisateur est pris en compte tout au long du processus et peut influencer le résultat grâce à des cartes de contraintes.<br />En parallèle, nous analysons l'apparence de la texture structurée afin d'extraire un ensemble réduit de textures représentant les matériaux utilisés pour l'intérieur des régions et leur contour. Ces informations nous permettent d'"habiller" de nouvelles structures de manière efficace. Dans un troisième temps, nous utilisons l'information de structure et de texture, ainsi que des informations usager afin de générer et propager des détails 3D sur des modèles. Nous proposons un système générique qui permettra d'alléger les artistes de tâches souvent répétitives et fastidieuses. Nous appliquons ce système à la génération de cartes de hauteurs et présentons plusieurs autres cas d'application.<br />L'ensemble des techniques proposées permet de synthétiser des textures structurées détaillées à partir d'exemples avec un coût mémoire réduit et permettant un rendu en temps-réel, tout en laissant du contrôle à l'utilisateur.
3

Reconstruction géométrique de formes - Application à la géologie

Nullans, Stéphane 14 December 1998 (has links) (PDF)
Cette thèse s'articule autour de la reconstruction géométrique de formes. Plusieurs méthodes, basées sur les diagrammes de Voronoï, sont proposées pour la reconstruction automatique d'objets naturels. L'application principale est la modélisation et l'imagerie géologique. Une première méthode permet la reconstruction de volumes et surfaces géologiqu- es à partir de données incomplètes et hétérogènes : données ponctuelles sur des affleurements, portions de contours cartographiques, sondages, coupes incomplètes ou interprétées, modèles numériques de terrains... L'idée majeure de la méthode consiste à assembler les objets différents selon leurs proximités, en utilisant le diagramme de Voronoï de ces objets. Les diagrammes de Voronoï sont des structures géométriques permettant de partitionner l'espace en régions d'influence. En pratique toutes les données sont discrétisées en un ensemble de points colorés, les couleurs représentant ici les caractéristiques géologiques ou géophysiques des données, que nous souhaitons imager. La partition "colorée" de ces points nous donne une première solution topologique au problème de reconstruction. Elle nous fournit en outre, une représentation du bord de l'objet géologique et de son intérieur. L'utilisation de courbes et de surfaces déformables sous contraintes (tension, courbure et respect de la topologie initiale) permet ensuite d'obtenir des interfaces plus lisses et plus conformes. Une étape particulière permet de prendre en compte des surfaces de discontinui- té comme les failles. Afin de représenter un objet S, non plus par des éléments discrets (polyèdres de Voronoi), mais par les valeurs positives d'une fonction continue, nous avons introduit une nouvelle méthode. L'objectif de la méthode est de définir une fonction interpolante s telle que l'ensemble des zéros de s passe exactement par les données de départ et soit une approximation cohérente et lisse de S par ailleurs. Dans un premier temps nous définissons, une fonction caractéristique locale en chaque donnée (point, contour...) et l'objet volumique final résulte alors d'une interpolation de ces fonctions.
4

Génération de maillages anisotropes / Anisotropic mesh generation

Rouxel-Labbé, Mael 16 December 2016 (has links)
Nous étudions dans cette thèse la génération de maillages anisotropes basée sur la triangulation de Delaunay et le diagramme de Voronoi. Nous considérons tout d'abord les maillages anisotropes localement uniformes, développés par Boissonnat, Wormser et Yvinec. Bien que l'aspect théorique de cette approche soit connu, son utilité pratique n'a été que peu explorée. Une étude empirique exhaustive est présentée et révèle les avantages, mais aussi les inconvénients majeurs de cette méthode. Dans un second temps, nous étudions les diagrammes de Voronoi anisotropes définis par Labelle et Shewchuk. Nous donnons des conditions suffisantes sur un ensemble de points pour que le dual du diagramme soit une triangulation plongée en toute dimension ; un algorithme générant de tels ensembles est conçu. Ce diagramme est utilisé pour concevoir un algorithme qui génère efficacement un maillage anisotrope pour des domaines de dimension intrinsèque faible plongés dans des espaces de dimension large. Notre algorithme est prouvable, mais les résultats sont décevants. Enfin, nous présentons le diagramme de Voronoi Riemannien discret, qui utilise des avancées récentes dans l'estimation de distances géodésiques et dont le calcul est grandement accéléré par l'utilisation d'un graphe anisotrope. Nous donnons des conditions suffisantes pour que notre structure soit combinatoirement équivalente au diagramme de Voronoi Riemannien et que son dual utilisant des simplexes droits mais aussi courbes est une triangulation plongée en toute dimension. Nous obtenons de bien meilleurs résultats que pour nos autres techniques, mais dont l'utilité reste limitée / In this thesis, we study the generation of anisotropic meshes using the concepts of Delaunay triangulations and Voronoi diagrams. We first consider the framework of locally uniform anisotropic meshes introduced by Boissonnat, Wormser and Yvinec. Despite known theoretical guarantees, the practicality of this approach has only been hardly studied. An exhaustive empirical study is presented and reveals the strengths but also the overall impracticality of the method. In a second part, we investigate the anisotropic Voronoi diagram introduced by Labelle and Shewchuk and give conditions on a set of seeds such that the corresponding diagram has a dual that is an embedded triangulation in any dimension; an algorithm to generate such sets is devised. Using the same diagram, we propose an algorithm to generate efficiently anisotropic triangulations of low-dimensional manifolds embedded in high-dimensional spaces. Our algorithm is provable, but produces disappointing results. Finally, we study Riemannian Voronoi diagrams and introduce discrete Riemannian Voronoi diagrams, which employ recent developments in the numerical computation of geodesic distances and whose computation is accelerated through the use of an underlying anisotropic graph structure. We give conditions that guarantee that our discrete structure is combinatorially equivalent to the Riemannian Voronoi diagram and that its dual is an embedded triangulation, using both straight and curved simplices. We obtain significantly better results than with our other methods, but the overall utility of
5

Méthodes algébriques robustes pour le calcul géométrique

Mantzaflaris, Angelos 03 October 2011 (has links) (PDF)
Le calcul géométrique en modélisation et en CAO nécessite la résolution approchée, et néanmoins certifiée, de systèmes polynomiaux. Nous introduisons de nouveaux algorithmes de sous-division afin de résoudre ce problème fondamental, calculant des développements en fractions continues des coordonnées des solutions. Au delà des exemples concrets, nous fournissons des estimations de la complexité en bits et des bornes dans le modèle de RAM réelle. La difficulté principale de toute méthode de résolution consiste en les points singuliers isolés. Nous utilisons les systèmes locaux inverses et des calculs numériques certifiés afin d'obtenir un critère de certification pour traiter les solutions singulières. Ce faisant, nous sommes en mesure de vérifier l'existence et l'unicité des singularités d'une structure de multiplicité donnée. Nous traitons deux principales applications géométriques. La première: l'approximation des ensembles semi-algébriques plans, apparaît fréquemment dans la résolution de contraintes géométriques. Nous présentons un algorithme efficace pour identifier les composants connexes et pour calculer des approximations polygonales et isotopiques à l'ensemble exact. Dans un deuxième temps, nous présentons un cadre algébrique afin de calculer des diagrammes de Voronoi. Celui-ci sera applicable à tout type de diagramme dans lequel la distance à partir d'un site peut être exprimé par une fonction polynomiale à deux variables (anisotrope, diagramme de puissance etc). Si cela n'est pas possible (par exemple diagramme de Apollonius, VD des ellipses etc), nous étendons la théorie aux distances implicitement données.
6

Triangulation de Delaunay et arbres multidimensionnels

Lemaire, Christophe 19 December 1997 (has links) (PDF)
Les travaux effectués lors de cette thèse concernent principalement la triangulation de Delaunay. On montre que la complexité en moyenne - en termes de sites inachevés - du processus de fusion multidimensionnelle dans l'hypothèse de distribution quasi-uniforme dans un hypercube est linéaire en moyenne. Ce résultat général est appliqué au cas du plan et permet d'analyser de nouveaux algorithmes de triangulation de Delaunay plus performants que ceux connus à ce jour. Le principe sous-jacent est de diviser le domaine selon des arbres bidimensionnels (quadtree, 2d-tree, bucket-tree. . . ) puis de fusionner les cellules obtenues selon deux directions. On étudie actuellement la prise en compte de contraintes directement pendant la phase de triangulation avec des algorithmes de ce type. De nouveaux algorithmes pratiques de localisation dans une triangulation sont proposés, basés sur la randomisation à partir d'un arbre binaire de recherche dynamique de type AVL, dont l'un est plus rapide que l'algorithme optimal de Kirkpatrick, au moins jusqu'à 12 millions de sites K Nous travaillons actuellement sur l'analyse rigoureuse de leur complexité en moyenne. Ce nouvel algorithme est utilisé pour construire " en-ligne " une triangulation de Delaunay qui est parmi les plus performantes des méthodes " en-ligne " connues à ce jour.

Page generated in 0.0352 seconds