Obtemos uma expansão assintótica da função de distribuição sob a hipótese nula da estatística gradiente para testar hipóteses nulas compostas na presença de parâmetros de perturbação. Esta expansão é derivada utilizando uma rota Bayesiana baseada no argumento de encolhimento descrito em Ghosh e Mukerjee (1991). Usando essa expansão, propomos uma estatística gradiente corrigida por um fator de correção tipo-Bartlett, que tem distribuição qui-quadrado até um erro de ordem o(n-1) sob a hipótese nula. A partir disso, determinamos fórmulas matriciais e algébricas que auxiliam na obtenção da estatística gradiente corrigida em modelos lineares generalizados com dispersão conhecida e desconhecida. Simulações de Monte Carlo são apresentadas. Finalmente, discutimos a obtenção de regiões de credibilidade via inversão da estatística gradiente. Caracterizamos as densidades a priori, matching priors, que asseguram propriedades de cobertura frequentista acuradas para essas regiões. / We obtain an asymptotic expansion for the null distribution function of the gradient statistic for testing composite null hypotheses in the presence of nuisance parameters. The expansion is derived using a Bayesian route based on the shrinkage argument described in Ghosh and Mukerjee (1991). Using this expansion, we propose a Bartlett-type corrected gradient statistic, which has a chi-square distribution up to an error of order o(n1) under the null hypothesis. Also, we determined matrix and algebraic formulas that assist in obtaining Bartett-type corrected statistic in generalized linear models with known and unknown dispersion. Monte Carlo simulations are presented. Finally, we obtain credible regions based by the inversion of gradient statistic. We characterize priori densities, matching priors, that ensure accurate frequentist coverage properties for these regions.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-13062013-163845 |
Date | 15 April 2013 |
Creators | Vargas, Tiago Moreira |
Contributors | Ferrari, Silvia Lopes de Paula |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0213 seconds