Return to search

Um framework de testes unitários para procedimentos de carga em ambientes de business intelligence

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Business Intelligence (BI) relies on Data Warehouse (DW), a historical data repository designed to support the decision making process. Despite the potential benefits of a DW, data quality issues prevent users from realizing the benefits of a BI environment and Data Analytics. Problems related to data quality can arise in any stage of the ETL (Extract, Transform and Load) process, especially in the loading phase. This thesis presents an approach to automate the selection and execution of previously identified test cases for loading procedures in BI environments and Data Analytics based on DW. To verify and validate the approach, a unit test framework was developed. The overall goal is achieve data quality improvement. The specific aim is reduce test effort and, consequently, promote test activities in DW process. The experimental evaluation was performed by two controlled experiments in the industry. The first one was carried out to investigate the adequacy of the proposed method for DW procedures development. The Second one was carried out to investigate the adequacy of the proposed method against a generic framework for DW procedures development. Both results showed that our approach clearly reduces test effort and coding errors during the testing phase in decision support environments. / A qualidade de um produto de software está diretamente relacionada com os testes empregados durante o seu desenvolvimento. Embora os processos de testes para softwares aplicativos e sistemas transacionais já apresentem um alto grau de maturidade, estes devem ser investigados para os processos de testes em um ambiente de Business Intelligence (BI) e Data Analytics. As diferenças deste ambiente em relação aos demais tipos de sistemas fazem com que os processos e ferramentas de testes existentes precisem ser ajustados a uma nova realidade. Neste contexto, grande parte das aplicações de Business Intelligence (BI) efetivas depende de um Data Warehouse (DW), um repositório histórico de dados projetado para dar suporte a processos de tomada de decisão. São as cargas de dados para o DW que merecem atenção especial relativa aos testes, por englobar procedimentos críticos em relação à qualidade. Este trabalho propõe uma abordagem de testes, baseada em um framework de testes unitários, para procedimentos de carga em um ambiente de BI e Data Analytics. O framework proposto, com base em metadados sobre as rotinas de carga, realiza a execução automática de casos de testes, por meio da geração de estados iniciais e a análise dos estados finais, bem como seleciona os casos de testes a serem aplicados. O objetivo é melhorar a qualidade dos procedimentos de carga de dados e reduzir o tempo empregado no processo de testes. A avaliação experimental foi realizada através de dois experimentos controlados executados na indústria. O primeiro avaliou a utilização de casos de testes para as rotinas de carga, comparando a efetividade do framework com uma abordagem manual. O segundo experimento efetuou uma comparação com um framework genérico e similar do mercado. Os resultados indicaram que o framework pode contribuir para o aumento da produtividade e redução dos erros de codificação durante a fase de testes em ambientes de suporte à decisão.

Identiferoai:union.ndltd.org:IBICT/oai:ri.ufs.br:123456789/3390
Date30 August 2016
CreatorsSantos, Igor Peterson Oliveira
ContributorsRodrigues Júnior, Methanias Colaço
PublisherUniversidade Federal de Sergipe, Pós-Graduação em Ciência da Computação, UFS, Brasil, Ciência da Computação
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFS, instname:Universidade Federal de Sergipe, instacron:UFS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds