Return to search

Conjecture de Greenberg généralisée et capitulation dans les Zp-extensions d'un corps de nombres

Le cadre général de cette thèse est celui de la théorie d'Iwasawa. Nous nous intéressons plus<br />particulièrement à la conjecture de Greenberg généralisée (multiple) (GG). Après avoir relié celle-ci à différents problèmes de capitulation pour certains groupes de cohomologie p-adiques en degré 2, nous proposons une version faible (GGf) de (GG) dont nous montrons la validité, pour tout corps de nombres F contenant une racine primitive p-ième de l'unité et un corps quadratique imaginaire dans lequel (p) se décompose, du moment que F vérifie la conjecture de Leopoldt. Les outils développés permettent de retrouver et de généraliser (notamment dans des Zp-extensions autre que la Zp-extension<br />cyclotomique) un certain nombre de résultats classiques en théorie d'Iwasawa.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00012074
Date08 December 2005
CreatorsVauclair, David
PublisherUniversité de Franche-Comté
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds