Return to search

Ondes planes tordues et diffusion chaotique / Distorted plane waves in chaotic scattering

Cette thèse traite de plusieurs problèmes de théorie de la diffusion dans la limite semi-classique, c’est à dire des propriétés des fonctions propres généralisées d’un opérateur de Schrödinger à haute fréquence. Les fonctions propres généralisées d’un opérateur de Schrödinger sur l’espace euclidien, pour un potentiel lisse à support compact, peuvent toujours se décomposer comme la somme d’une partie entrante et d’une partie sortante, plus un terme négligeable à l’infini. La matrice de diffusion relie alors la partie entrante et la partie sortante de la fonction propre. Une première partie de ce travail concerne le spectre de la matrice de diffusion. On montre un résultat d’équidistribution des valeurs propres de la matrice de diffusion, sous l’hypothèse sans doute générique que les ensembles de points fixes de certaines applications définies à partir de la dynamique classique sont de mesure de Lebesgue nulle. Ce résultat était connu précédemment, sous l’hypothèse additionnelle que la dynamique classique est sans ensemble capté.Une seconde partie du travail concerne les ondes planes tordues, qui sont une famille particulière de fonctions propres généralisées d’un opérateur de Schrödinger, pouvant s'écrire comme la somme d'une onde plane et d'une partie purement sortante. Nous faisons l’hypothèse que la dynamique classique sous-jacente possède un ensemble capté hyperbolique, et qu’une certaine pression topologique est négative. Sous ces hypothèses, on obtient dans la limite semi-classique une description précise des ondes planes tordues comme une somme convergente d’états lagrangiens. On peut en particulier en déduire la mesure semi-classique associée aux ondes planes tordues. Si la variété est de courbure négative, et que le potentiel est nul, ces états lagrangiens sont associés à des lagrangiennes se projetant sans caustiques sur la variété de base. On peut alors en déduire des résultats sur les normes C^l et les ensembles nodaux des ondes planes tordues. Nous obtenons aussiune borne inférieure sur le nombre de domaine nodaux de la somme de deux ondes planes tordues de directions incidentes proches, pour une petite perturbation générique d’une métrique de courbure négative vérifiant la condition de pression topologique. / This thesis deals with several problems of scattering theory in the semi-classical limit, that is to say, with properties of the generalised eigenfunctions of a Schrödinger operator at high frequencies. The generalised eigenfunctions of a Schrödinger operator on the Euclidean space, with a compactly supported smooth potential, may always be written as the sum of an incoming wave and an outgoing wave, plus a term which is negligible at infinity. The scattering matrix relates the incoming part with the outgoing part. The first part of this work deals with the spectrum of the scattering matrix. We show an equidistribution result for the eigenvalues of the scattering matrix, under the hypothesis that the sets of fixed points of some maps defined from the classical dynamics has measure zero. This result was previously known under the additional assumption that the classical dynamics has an empty trapped set.A second part of this work deals with the distorted plane waves, which are a particular family of generalized eigenfunctions of a Schrödinger operator, which can be written as the sum of a plane wave and a purely outgoing part. We make the hypothesis that the underlying classical dynamics has a hyperbolic trapped set, and that a certain topological pressure is negative. Under these assumptions, we obtain in the semiclassical limit a precise description of distorted plane waves as a convergent sum of Lagrangian states. In particular, we can deduce from this the semiclassical measure associated to distorted plane waves. If we furthermore assume that the manifold has non-positive curvature, and that the potential is zero, these Lagrangian states project on the base manifold without caustics. We deduce from this results on the C^l norms and on the nodal sets of distorted plane waves. We also obtain a lower bound on the number of nodal domains of the sum of two distorted plane waves with close enough incoming directions , for a small generic perturbation of a metric of negative curvature satisfying the topological pressure assumption.

Identiferoai:union.ndltd.org:theses.fr/2016SACLS477
Date01 December 2016
CreatorsIngremeau, Maxime
ContributorsUniversité Paris-Saclay (ComUE), Nonnenmacher, Stéphane
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0019 seconds