Return to search

Tailoring the mesoscopic structure and orientation of semicrystalline and liquid-crystalline polymers : from 1D- to 2D-confinement

Controlling the micro-structure of organic materials is crucial for a variety of practical applications such as photonics, biomedicine or the rapidly growing field of organic electronics. Recent studies have shown a possibility of tailoring the polymer structure on the nanoscale using supramolecular self-assembly under spatial confinement. Despite extensive studies already performed in this field, many questions remain open. In particular, it will be important to understand how different structure formation processes such as crystallization, LC-phase formation, microphase separation, and others occur under confinement. In the present work, we address the effect of 1D- and 2D-confinement on the structure formation for a variety of systems including segmented poly(ether-ester-amide) (PEEA) copolymers, main-chain liquid-crystalline (LC) polymers belonging to the family of poly(di-n-alkylsiloxane)s and liquid-crystalline/semicrystalline block copolymers formed through complexation of poly (2-vinylpyridine-b-ethylene oxide) (P2VP-PEO) with a wedge-shaped ligand, 4'-(3'',4'',5''-tris(octyloxy) benzamido) propanoic acid. In order to reveal the morphological diversity of the studied systems under confinement, the work was carried out on bulk materials and on thin films employing a battery of experimental methods. The main experimental techniques operational in direct and reciprocal space applied in my work are described in chapter 2. [...]

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01062091
Date15 November 2012
CreatorsOdarchenko, Yaroslav
PublisherUniversité de Haute Alsace - Mulhouse
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0025 seconds