Return to search

Local heat transfer rate and bubble dynamics during jet impingement boiling

Characterization of local boiling trends, in addition to the typically reported area-averaged trends, is essential for the robust design and implementation of phase change technologies to sensitive heat transfer applications such as electronics cooling. Obtaining the values of heat fluxes corresponding to locally varying surface temperatures has been a challenge limiting most investigations to area-averaged results. This thesis illustrates the importance of a spatially local heat transfer analysis during boiling.
Pool and submerged jet impingement boiling scenarios on a silicon surface are considered at the macroscale (27.5 mm heater with multiple nucleation sites) and microscale (1000 ��m heater for isolated bubble generation), by the use of two thin film serpentine heater geometries. The macroscale heater highlights the effect of spatial variations in imposed heat flux on boiling heat transfer with a circumferentially uniform but radially non-uniform heat flux distribution. The microscale heater simulates a local hot-spot for spot cooling on an electronic device.
Spatial variation in boiling heat transfer and bubble dynamics with and without a jet flow are documented using thin film voltage sensors along with qualitative and quantitative high speed imaging and infra-red thermography. Unique to this study is the documentation of local boiling curves for different radial locations on the heat transfer surface and their comparison with the corresponding area-averaged representations. It is shown here that sectionally averaged representations of boiling curves over regions of like-imposed heat flux can substantially simplify the interpretation of data while retaining important information of the local variations in heat transfer.
The radial influence of the convective jet flow on the bubble dynamics and boiling heat transfer is assessed for a single circular submerged jet configuration. Varied parameters include jet exit Reynolds numbers, nozzle geometry, test fluid (deionized water and FC-72), fluid subcooling and the supplied heat flux. Distinct modifications of the surface temperature distribution imposed by the impinging jet flow are highlighted by comparing radial temperature profiles during pool and jet impingement boiling. It is demonstrated that in contrast with pool boiling, thermal overshoots during jet impingement boiling for a highly wetting fluid like FC-72 are highest in regions farthest from the impingement point.
The effect of jet inertia on bubble departure characteristics are compared with pool boiling under subcooled conditions for FC-72. Qualitative high speed visualization indicates the presence of two modes of bubble generation during jet impingement boiling (a) bubble departure from the surface and (b) bubble separation from the source resulting in sliding bubbles over the surface. The effect of jet flow on bubble entrainment is depicted. Quantitative results indicate that in general departure diameters for pool and jet impingement boiling increase and plateau at a maximum value with increasing power input while no notable trends were observed in the corresponding departure frequencies. The largest departure diameters for jet impingement boiling at fixed fluid subcoolings of 10��C and 20��C were found to be smaller than that for the corresponding pool boiling test by a factor of 1.6 and 2.3, respectively. / Graduation date: 2013

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/35039
Date29 October 2012
CreatorsMani, Preeti
ContributorsNarayanan, Vinod
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0016 seconds