Return to search

Growth of pentenary chalcopyrite thin films and characterization of photovoltaic devices from these films

Ph.D. / The two-step growth process, involving the selenization and sulfurization of sputter deposited CuInGa alloys has been identified as a commercially viable method to produce large area Cu(In1-xGax)(Se1-ySy)2 absorber films for solar cell application. The success of this method is however limited by insufficient control over the lattice parameters and band gap of the compound due to phase segregation associated with non-uniform Ga and S incorporation. This study provides an approach to overcome this limitation by investigating the influence of process parameters on the structural features of the Cu(In1-xGax)(Se1-ySy)2 films. In this approach, films were partially selenized in optimum H2Se/Ar flow to produce composite alloys comprising of a mixture of binary selenides (InSe, CuSe and GaSe) and at least one group I-III-VI ternary alloy. The subsequent reaction step in H2S/Ar produced homogeneous Cu(In1-xGax)(Se1-ySy)2 films. The lattice constants of the resulting films varied linearly with an increase in the S/(S+Se) ratio in accordance with Vegard’s law. The Raman spectra of the films were characterized by the presence of the A1-Se mode near 180 cm-1 and a low intensity, A1-S mode around 290 cm-1. With an increase in the S/(S+Se) ratio of the films, the FWHM of the A1-Se mode increased and its frequency shifted linearly towards that of A1-S mode. A corresponding increase in the value of the Urbach energy, attributed to an increase in chalcopyrite crystal alloy disorder, was observed from the analysis of the transmission and reflectance data. 0.45 cm2 area devices with conversion efficiencies between 12% and 15%, were fabricated from absorber layers with the (112) x-ray diffraction peak position between 27.1°and 27.2°, corresponding to the S/(S+Se) ratio of about 0.18 to 0.20. The process scale up was demonstrated by the fabrication of large area, (30 x 40) cm2 modules, with conversion efficiencies of 10%.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:6710
Date31 March 2010
CreatorsDhlamini, Frank Dumisani
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.0017 seconds