Return to search

Development and Validation of a Control Strategy for a Parallel Hybrid (Diesel-Electric) Powertrain

The rise in overall powertrain complexity and the stringent performance requirements of a hybrid electric vehicle (HEV) have elevated the role of its powertrain control strategy to considerable importance. Iterative modeling and simulation form an integral part of the control strategy design process and industry engineers rely on proprietary ?legacy? models to rapidly develop and implement control strategies. However, others must initiate new algorithms and models in order to develop production-capable control systems. This thesis demonstrates the development and validation of a charge-sustaining control algorithm for a through-the-road (TTR) parallel hybrid (diesel-electric) powertrain. Some unique approaches used in powertrain-level control of other commercial and prototype vehicles have been adopted to incrementally develop this control strategy. The real-time performance of the control strategy has been analyzed through on-road and chassis dynamometer tests over several standard drive cycles. Substantial quantitative improvements in the overall HEV performance over the stock configuration, including better acceleration and fuel-economy have been achieved.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2389
Date09 December 2006
CreatorsMathews, Jimmy C
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0017 seconds