Return to search

Singularités des courbes planes, module des dérivations et schéma des arcs / Singularities of affine algebraic plane curves, derivations module and arc spaces

A toute variété algébrique on peut associer différents objets algébrico-géométriques qui rendent compte en particulier des singularités de la variété. Cette thèse traite de l'interaction entre l'étude des singularités, le schéma des arcs et le module des dérivations dans le cadre des courbes algébriques affines planes. Elle démontre que les d-tissus quasi-homogènes incomplets sont linéarisables pour d > 3 en utilisant un théorème d'Alain Hénaut. Enfin, dans un dernier chapitre, cette thèse introduit le formalisme des fonctions zêta motiviques associées à une 1-forme locale. / To any algebraic variety one can associate several algebraic-geometric objets which in particular provide information on the singularities of the variety. This thesis deals with the interaction between the study of singularities, arc spaces and derivations module in the context of affine algebraic plane curves. Using a theorem of Alain Hénaut, we show that quasi-homogeneous incomplete d-webs are linearizable for d > 3. Finally, in the last chapter, this thesis intoduces the formalism of motivic zêta function of a local 1-form.

Identiferoai:union.ndltd.org:theses.fr/2014REN1S111
Date12 December 2014
CreatorsKpognon, Kodjo Egadédé
ContributorsRennes 1, Sebag, Julien
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0017 seconds