La tomographie par émission de positons (TEP) est une méthode d’imagerie clinique en forte expansion dans le domaine de l’oncologie. De nombreuses études cliniques montrent que la TEP permet, d’une part de diagnostiquer et caractériser les lésions cancéreuses à des stades plus précoces que l’imagerie anatomique conventionnelle, et d’autre part d’évaluer plus rapidement la réponse au traitement. Le raccourcissement du cycle comprenant le diagnostic, la thérapie, le suivi et la réorientation thérapeutiques contribue à augmenter le pronostic vital du patient et maîtriser les coûts de santé. La durée d’un examen TEP ne permet pas de réaliser une acquisition sous apnée. La qualité des images TEP est par conséquent affectée par les mouvements respiratoires du patient qui induisent un flou dans les images. Les effets du mouvement respiratoire sont particulièrement marqués au niveau du thorax et de l’abdomen. Plusieurs types de méthode ont été proposés pour corriger les données de ce phénomène, mais elles demeurent lourdes à mettre en place en routine clinique. Des travaux récemment publiés proposent une évaluation de ces méthodes basée sur des critères de qualité tels que le rapport signal sur bruit ou le biais. Aucune étude à ce jour n’a évalué l’impact de ces corrections sur la qualité du diagnostic clinique. Nous nous sommes focalisés sur la problématique de la détection des lésions du thorax et de l'abdomen de petit diamètre et faible contraste, qui sont les plus susceptibles de bénéficier de la correction du mouvement respiratoire en routine clinique. Nos travaux ont consisté dans un premier temps à construire une base d’images TEP qui modélisent un mouvement respiratoire non-uniforme, une variabilité inter-individuelle et contiennent un échantillonnage de lésions de taille et de contraste variable. Ce cahier des charges nous a orientés vers les méthodes de simulation Monte Carlo qui permettent de contrôler l’ensemble des paramètres influençant la formation et la qualité de l’image. Une base de 15 modèles de patient a été créée en adaptant le modèle anthropomorphique XCAT sur des images tomodensitométriques (TDM) de patients. Nous avons en parallèle développé une stratégie originale d’évaluation des performances de détection. Cette méthode comprend un système de détection des lésions automatisé basé sur l'utilisation de machines à vecteurs de support. Les performances sont mesurées par l’analyse des courbes free-receiver operating characteristics (FROC) que nous avons adaptée aux spécificités de l’imagerie TEP. L’évaluation des performances est réalisée sur deux techniques de correction du mouvement respiratoire, en les comparant avec les performances obtenues sur des images non corrigées ainsi que sur des images sans mouvement respiratoire. Les résultats obtenus sont prometteurs et montrent une réelle amélioration de la détection des lésions après correction, qui approche les performances obtenues sur les images statiques. / Positron emission tomography (PET) is nuclear medicine imaging technique that produces a three-dimensional image of functional processes in the body. The system detects pairs of gamma rays emitted by a tracer, which is introduced into the body. Three-dimensional images of tracer concentration within the body are then constructed by computer analysis. Respiratory motion in emission tomography leads to image blurring especially in the lower thorax and the upper abdomen, influencing this way the quantitative accuracy of PET measurements as well a leading to a loss of sensitivity in lesion detection. Although PET exams are getting shorter thanks to the improvement of scanner sensitivity, the current 2-3 minutes acquisitions per bed position are not yet compatible with patient breath-holding. Performing accurate respiratory motion correction without impairing the standard clinical protocol, ie without increasing the acquisition time, thus remains challenging. Different types of respiratory motion correction approaches have been proposed, mostly based on the use of non-rigid deformation fields either applied to the gated PET images or integrated during an iterative reconstruction algorithm. Evaluation of theses methods has been mainly focusing on the quantification and localization accuracy of small lesions, but their impact on the clinician detection performance during the diagnostic task has not been fully investigated yet. The purpose of this study is to address this question based on a computer assisted detection study. We evaluate the influence of two motion correction methods on the detection of small lesions in human oncology FDG PET images. This study is based on a series of realistic simulated whole-body FDG images based on the XCAT model. Detection performance is evaluated with a computer-aided detection system that we are developing for whole-body PET/CT images. Detection performances achieved with these two correction methods are compared with those achieved without correction, ie. with respiration average PET images as well as with reference images that do not model respiration effects. The use of simulated data makes possible the creation of theses perfectly corrected images and the definition of known lesions locations that serve as a reference.
Identifer | oai:union.ndltd.org:theses.fr/2012ISAL0013 |
Date | 14 February 2012 |
Creators | Marache-Francisco, Simon |
Contributors | Lyon, INSA, Prost, Rémy |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds