Return to search

Innovative transceiver approaches for low-power near-field and far-field applications

Wireless operation, near-field or far-field, is a core functionality of any mobile or autonomous system. These systems are battery operated or most often utilize energy scavenging as a means of power generation. Limited access to power, expected long and uninterrupted operation, and constrained physical parameters (e.g. weight and size), which limit overall power harvesting capabilities, are factors that outline the importance for innovative low-power approaches and designs in advanced low-power wireless applications. Low-power approaches become especially important for the wireless transceiver, the block in charge of wireless/remote functionality of the system, as this block is usually the most power hungry component in an integrated system-on-chip (SoC). Three such advanced applications with stringent power requirements are examined including space-based exploratory remote sensing probes and their associated radiation effects, millimeter-wave phased-array radar for high-altitude tactical and geological imaging, and implantable biomedical devices (IMDs), leading to the proposal and implementation of low-power wireless solutions for these applications in SiGe BiCMOS and CMOS and platforms.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/52245
Date27 August 2014
CreatorsInanlou, Farzad Michael-David
ContributorsCressler, John D.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.002 seconds