Return to search

Using Reinforcement Learning to Correct Soft Errors of Deep Neural Networks / Använda Förstärkningsinlärning för att Upptäcka och Mildra Mjuka Fel i Djupa Neurala Nätverk

Deep Neural Networks (DNNs) are becoming increasingly important in various aspects of human life, particularly in safety-critical areas such as autonomous driving and aerospace systems. However, soft errors including bit-flips can significantly impact the performance of these systems, leading to serious consequences. To ensure the reliability of DNNs, it is essential to guarantee their performances. Many solutions have been proposed to enhance the trustworthiness of DNNs, including traditional methods like error correcting code (ECC) that can mitigate and detect soft errors but come at a high cost of redundancy. This thesis proposes a new method of correcting soft errors in DNNs using Deep Reinforcement Learning (DRL) and Transfer Learning (TL). DRL agent can learn the knowledge of identifying the layer-wise critical weights of a DNN. To accelerate the training time, TL is used to apply this knowledge to train other layers. The primary objective of this method is to ensure acceptable performance of a DNN by mitigating the impact of errors on it while maintaining low redundancy. As a case study, we tested the proposed method approach on a multilayer perception (MLP) and ResNet-18, and our results show that our method can save around 25% redundancy compared to the baseline method ECC while achieving the same level of performance. With the same redundancy, our approach can boost system performance by up to twice that of conventional methods. By implementing TL, the training time of MLP is shortened to around 81.11%, and that of ResNet-18 is shortened to around 57.75%. / DNNs blir allt viktigare i olika aspekter av mänskligt liv, särskilt inom säkerhetskritiska områden som autonom körning och flygsystem. Mjuka fel inklusive bit-flip kan dock påverka prestandan hos dessa system avsevärt, vilket leder till allvarliga konsekvenser. För att säkerställa tillförlitligheten hos DNNs är det viktigt att garantera deras prestanda. Många lösningar har föreslagits för att förbättra tillförlitligheten för DNNs, inklusive traditionella metoder som ECC som kan mildra och upptäcka mjuka fel men som har en hög kostnad för redundans. Denna avhandling föreslår en ny metod för att korrigera mjuka fel i DNN med DRL och TL. DRL-agenten kan lära sig kunskapen om att identifiera de lagermässiga kritiska vikterna för en DNN. För att påskynda träningstiden används TL för att tillämpa denna kunskap för att träna andra lager. Det primära syftet med denna metod är att säkerställa acceptabel prestanda för en DNN genom att mildra inverkan av fel på den samtidigt som låg redundans bibehålls. Som en fallstudie testade vi den föreslagna metodmetoden på en MLP och ResNet-18, och våra resultat visar att vår metod kan spara cirka 25% redundans jämfört med baslinjemetoden ECC samtidigt som vi uppnår samma prestationsnivå. Med samma redundans kan vårt tillvägagångssätt öka systemets prestanda med upp till dubbelt så högt som för konventionella metoder. Genom att implementera TL förkortas träningstiden för MLP till cirka 81.11%, och den för ResNet-18 förkortas till cirka 57.75%.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-338112
Date January 2023
CreatorsLi, Yuhang
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2023:713

Page generated in 0.02 seconds