Dans cette thèse, des simulations numériques tridimensionnelles instationnaires d'une installation expérimentale de combustion en boucle chimique sont réalisées. Le pilote expérimental, d'une puissance de 120 kWth, utilise un matériau perovskite, à base de Ca-Mn, comme transporteur d'oxygène. Les simulations numériques sont réalisées par le code NEPTUNE_CFD, selon une approche Euler-Euler pour les deux phases (solide et gazeuse), avec des modèles de fermeture spécifiques pour modéliser les transferts de masse, de mouvement et d'énergie. Les réactions hétérogènes (i.e. réactions gaz-solide) de réduction et d'oxydation sont décrites au moyen d'un modèle à cœur rétrécissant dans le grain, qui prend en compte les mécanismes compétitifs dans le processus global de réaction gaz-solide: réaction chimique à la surface interne des particules,diffusion à travers la couche de produits et transfert externe autour des particules. Les résultats des simulations numériques sont validées avec des mesures expérimentales et analysées afin de mieux comprendre le comportement local/instationnaire de l'écoulement gaz-particules réactif dans ce système de combustion en boucle chimique. L'outil théorique/numérique développé dans ce travail sera utilisé pour le dimensionnement d'une unité pilote à l’échelle des installations industrielles. / In this work, reactive unsteady three-dimensional numerical simulations of a Chemical Looping Combustion (CLC) plant are performed. The plant is a 120 kWth pilot working with Ca-Mn-based material as selected oxygen carrier. Numerical simulations are performed by NEPTUNE_CFD code using an Euler-Euler approach which computes both the gas and the solid phases in an Eulerian fashion accounting for specific closures in order to model interphase mass, momentum and energy transfers. Reduction and oxidation heterogeneous (i.e. gas-solid) reactions are modeled by means of a grain model (shrinking core model in the grain) accounting for both the competing mechanisms of chemical reaction at the particle internal surface and gaseous diffusion through the product layer. Results from numerical simulations are validated against experimental measurements and analyzed in order to gain insight in the local behaviour of the reactive gas-particle flow in the CLC system. The theoretical/numerical tool developed in this work will be used for design upgrade recommendation in the stage of scaling-up from pilot to industrial facilities.
Identifer | oai:union.ndltd.org:theses.fr/2017INPT0014 |
Date | 21 February 2017 |
Creators | Hamidouche, Ziad |
Contributors | Toulouse, INPT, Simonin, Olivier, Masi, Enrica |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds