Return to search

The production of a lyotropic liquid crystal coated powder precursor through twin screw extrusion.

The twin screw extrusion technique has been explored to produce lyotropic liquid crystal coated powder precursor by exploiting Pluronic F127 thermoreversible gelation property to get powder precursor without granular aggregates or with less compacted granular aggregates. The highly soluble chlorpheniramine maleate loaded in Pluronic F127 solution coated MCC particles prepared through twin screw extrusion was examined to produce the cubic phase (gel) for the development of controlled release formulation and for coating of very fine particles which cannot be achieved by traditional bead coaters. Controlled release formulations are beneficial in reducing the frequency of administration of highly soluble drugs having short half life and also to address the problem of polypharmacy in old age patients by reduction of dosage frequency. An unusual refrigerated temperature (5 C) profile for twin screw extrusion was selected based on the complex viscoelastic flow behaviour of Pluronic F127 solution which was found to be highly temperature sensitive. The Pluronic F127 solution was found to be Newtonian in flow and less viscoelastic at low temperature, such that low temperature (5 C) conditions were found to be suitable for mixing and coating the MCC particles to avoid compacted aggregates. At higher temperatures (35-40 C) Pluronic F127 solution exhibited shear thinning and prominent viscoelasticity, properties which were exploited to force CPM containing Pluronic F127 solution to stick over the MCC surface. This was achieved by elevating the temperature of the last zone of the extrusion barrel. It was found that to avoid compacted aggregates the MCC must be five times the weight of the Pluronic F127 solution and processed at a screw speed of 400 RPM or above at refrigerated temperature. Processing was not found to be smooth at ambient temperature with frictional heat and high torque generation due to significant compaction of coated particles which can be attributed to the elastic behaviour of Pluronic F127 solution at temperatures between ambient to typical body temperature. PLM images confirmed the cubic phase formation (gel) by Pluronic F127 coating which was found to be thick with maximum Pluronic F127 concentration (25%). SEM images showed smoothing of surface topography, and stretching and elongation of MCC fibres after extrusion which is indicative of coating through extrusion processing. Plastic deformation was observed for the lower Pluronic F127 concentration and higher MCC proportions. There was a significant decrease in work done for cohesion by the powder flow analyser observed in the batches with more aggregates compared with batches with least aggregates. A regression analysis study on factorial design batches was conducted to investigate the significant independent variables and their impact on dependent variables for example % torque, geometric mean diameter and work done for cohesion, and to quantitatively evaluate them. From the regression analysis data it was found that the coefficient of determination for all three dependent variables was in the range of 55-62%. The pharmaceutical performance of the prepared coated LLC precursor through twin screw extrusion in terms of controlled release was found to be very disappointing. Almost 100% chlorpheniramine maleate was released within 10-15mins, defined as providing burst release. The MDSC method was developed within this work to detect Pluronic F127 solution cubic phase formation. The MDSC method was developed to consider sample size, effect of heating and cooling, sample heat capacity, and the parameters for highest sensitivity which can be followed by sample accurately without the phase lag to produce accurate repeatable results.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/6352
Date January 2013
CreatorsLikhar, Lokesh
ContributorsGough, Timothy D., Paradkar, Anant R
PublisherUniversity of Bradford, School of Life Sciences
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeThesis, doctoral, MPhil
Rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.

Page generated in 0.0027 seconds