Return to search

Méthodes d'ordre élevé et méthodes de décomposition de domaine efficaces pour les équations de Maxwell en régime harmonique / Efficient high order and domain decomposition methods for the time-harmonic Maxwell's equations

Les équations de Maxwell en régime harmonique comportent plusieurs difficultés lorsque la fréquence est élevée. On peut notamment citer le fait que leur formulation variationnelle n’est pas définie positive et l’effet de pollution qui oblige à utiliser des maillages très fins, ce qui rend problématique la construction de solveurs itératifs. Nous proposons une stratégie de solution précise et rapide, qui associe une discrétisation par des éléments finis d’ordre élevé à des préconditionneurs de type décomposition de domaine. La conception, l’implémentation et l’analyse des deux méthodes sont assez difficiles pour les équations de Maxwell. Les éléments finis adaptés à l’approximation du champ électrique sont les éléments finis H(rot)-conformes ou d’arête. Ici nous revisitons les degrés de liberté classiques définis par Nédélec, afin d’obtenir une expression plus pratique par rapport aux fonctions de base d’ordre élevé choisies. De plus, nous proposons une technique pour restaurer la dualité entre les fonctions de base et les degrés de liberté. Nous décrivons explicitement une stratégie d’implémentation qui a été appliquée dans le langage open source FreeFem++. Ensuite, nous nous concentrons sur les techniques de préconditionnement du système linéaire résultant de la discrétisation par éléments finis. Nous commençons par la validation numérique d’un préconditionneur à un niveau, de type Schwarz avec recouvrement, avec des conditions de transmission d’impédance entre les sous-domaines. Enfin, nous étudions comment des préconditionneurs à deux niveaux, analysés récemment pour l’équation de Helmholtz, se comportent pour les équations de Maxwell, des points de vue théorique et numérique. Nous appliquons ces méthodes à un problème à grande échelle qui découle de la modélisation d’un système d’imagerie micro-onde, pour la détection et le suivi des accidents vasculaires cérébraux. La précision et la vitesse de calcul sont essentielles dans cette application. / The time-harmonic Maxwell’s equations present several difficulties when the frequency is large, such as the sign-indefiniteness of the variational formulation, the pollution effect and the problematic construction of iterative solvers. We propose a precise and efficient solution strategy that couples high order finite element (FE) discretizations with domain decomposition (DD) preconditioners. High order FE methods make it possible for a given precision to reduce significantly the number of unknowns of the linear system to be solved. DD methods are then used as preconditioners for the iterative solver: the problem defined on the global domain is decomposed into smaller problems on subdomains, which can be solved concurrently and using robust direct solvers. The design, implementation and analysis of both these methods are particularly challenging for Maxwell’s equations. FEs suited for the approximation of the electric field are the curl-conforming or edge finite elements. Here, we revisit the classical degrees of freedom (dofs) defined by Nédélec to obtain a new more friendly expression in terms of the chosen high order basis functions. Moreover, we propose a general technique to restore duality between dofs and basis functions. We explicitly describe an implementation strategy, which we embedded in the open source language FreeFem++. Then we focus on the preconditioning of the linear system, starting with a numerical validation of a one-level overlapping Schwarz preconditioner, with impedance transmission conditions between subdomains. Finally, we investigate how two-level preconditioners recently analyzed for the Helmholtz equation work in the Maxwell case, both from the theoretical and numerical points of view. We apply these methods to the large scale problem arising from the modeling of a microwave imaging system, for the detection and monitoring of brain strokes. In this application accuracy and computing speed are indeed of paramount importance.

Identiferoai:union.ndltd.org:theses.fr/2017AZUR4067
Date11 September 2017
CreatorsBonazzoli, Marcella
ContributorsCôte d'Azur, Rapetti, Francesca, Dolean, Victorita
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds