Spelling suggestions: "subject:"timeharmonic maxwell’s equations"" "subject:"timeharmonic maxwelle’s equations""
1 |
Méthode d'éléments finis d'ordre élevé et d'équations intégrales pour la résolution de problème de furtivité radar d'objets à symétrie de révolution / High order finite element methods and integral equations to solve scattering problems by axisymmetric bodiesCambon, Sebastien 02 July 2012 (has links)
Dans ce travail de thèse, nous nous sommes intéressés à la modélisation des phénomènes de diffraction d’ondes électromagnétiques par des objets à symétrie de révolution complexes et fortement hétérogènes. La méthode que nous développons ici consiste en un couplage entre équations aux dérivées partielles (EDP) et équations intégrales (EI). Cette idée est essentiellement connue pour avoir deux avantages. Le premier est que les hétérogénéités de l’objet sont prises en compte naturellement dans la formulation du problème. Le deuxième est dû à l’utilisation des équations intégrales qui donnent une représentation exacte des solutions dans le milieu extérieur en fonction des courants surfaciques. Le domaine de simulation peut ainsi être ramené à l’objet lui-même. L’utilisation de développements en séries de Fourier combinés à la propriété d’invariance par rotation de l’objet permet alors la réduction du problème global 3D à un ensemble dénombrable de problème 2D.L’étude de ces problèmes nous a conduit à décomposer notre analyse en plusieurs parties,chacune ayant à traiter une partie du problème complet ou les méthodes d’intégrations numériques. Ces dernières étant difficiles à réaliser dans le cas des équations intégrales.Nous avons tout d’abord étudié un problème de Maxwell intérieur pour lequel nous avons développé une nouvelle méthode d’éléments finis d’ordre élevé dont nous avons montré l’efficacité et la précision sur de multiples exemples. Puis, nous avons étudié le problème de diffraction d’ondes planes pour des objets parfaitement conducteurs. La méthode d’éléments finis de frontière employée est alors construite par extension de la méthode précédente via l’opérateur de trace tangentielle. En combinant ces deux études, nous avons résolu le problème couplé en introduisant la propriété de symétrie de révolution dans une formulation variationnelle bien choisie. Par construction, les éléments finis qui y sont utilisés sont alors naturellement adaptées. L’algorithme de parallélisation de la méthode de couplage est finalement présentée et des comparaisons entre notre code AxiMax et un code 3D sont illustrées. Dans tous les cas, nous montrons que la méthode d’éléments finis d’ordre élevé permet d’obtenir des résultats d’une grande précision en fonction de la qualité des paramètres de simulation. / In this thesis, we are interested in modeling diffraction of electromagnetic waves by axisymmetric and highly heterogeneous objects. Our method consists in a coupling between partial differential equations and integral equations. This idea is mainly interesting for two reasons : heterogeneities are handled naturally in the formulation and integral equations give an analytical representation of solutions outside the object based on surface currents.These advantages allow us to limit the domain of simulation to the object itself. In addition,using Fourier series combined with the rotational invariance property of the object, the 3D problem is reduced to a countable set of 2D problems. The study of these problems is split into several parts. Each part has to deal with aspecific problem as for example the numerical integration of singular integrals which is difficult to achieve. As a first step, we study time-harmonic Maxwell’s equations in a bounded domain for which we develop a new high-order finite element method and present its efficiency and accuracy on many examples. Secondly, we consider the diffraction of plane waves by perfect electric conductors to analyse integral equations for these kind of object.The boundary finite element method applied is defined by extension of the previous one via tangential trace operator. Then, we solve the coupled problem using a well chosen formulation based on the previous studies for which our finite element method is naturally adapted by construction. In order to evaluate its efficiency, a comparison is performed between our program « AxiMax » and one based on a purely 3D model. To conclude, in the last two chapters, we present the numerical integration method and the multi-processing algorithm developed in AxiMax. In all cases, we put forward the fact that our finite element method provides accurate results depending on the quality of the simulation parameters.
|
2 |
Méthodes d'ordre élevé et méthodes de décomposition de domaine efficaces pour les équations de Maxwell en régime harmonique / Efficient high order and domain decomposition methods for the time-harmonic Maxwell's equationsBonazzoli, Marcella 11 September 2017 (has links)
Les équations de Maxwell en régime harmonique comportent plusieurs difficultés lorsque la fréquence est élevée. On peut notamment citer le fait que leur formulation variationnelle n’est pas définie positive et l’effet de pollution qui oblige à utiliser des maillages très fins, ce qui rend problématique la construction de solveurs itératifs. Nous proposons une stratégie de solution précise et rapide, qui associe une discrétisation par des éléments finis d’ordre élevé à des préconditionneurs de type décomposition de domaine. La conception, l’implémentation et l’analyse des deux méthodes sont assez difficiles pour les équations de Maxwell. Les éléments finis adaptés à l’approximation du champ électrique sont les éléments finis H(rot)-conformes ou d’arête. Ici nous revisitons les degrés de liberté classiques définis par Nédélec, afin d’obtenir une expression plus pratique par rapport aux fonctions de base d’ordre élevé choisies. De plus, nous proposons une technique pour restaurer la dualité entre les fonctions de base et les degrés de liberté. Nous décrivons explicitement une stratégie d’implémentation qui a été appliquée dans le langage open source FreeFem++. Ensuite, nous nous concentrons sur les techniques de préconditionnement du système linéaire résultant de la discrétisation par éléments finis. Nous commençons par la validation numérique d’un préconditionneur à un niveau, de type Schwarz avec recouvrement, avec des conditions de transmission d’impédance entre les sous-domaines. Enfin, nous étudions comment des préconditionneurs à deux niveaux, analysés récemment pour l’équation de Helmholtz, se comportent pour les équations de Maxwell, des points de vue théorique et numérique. Nous appliquons ces méthodes à un problème à grande échelle qui découle de la modélisation d’un système d’imagerie micro-onde, pour la détection et le suivi des accidents vasculaires cérébraux. La précision et la vitesse de calcul sont essentielles dans cette application. / The time-harmonic Maxwell’s equations present several difficulties when the frequency is large, such as the sign-indefiniteness of the variational formulation, the pollution effect and the problematic construction of iterative solvers. We propose a precise and efficient solution strategy that couples high order finite element (FE) discretizations with domain decomposition (DD) preconditioners. High order FE methods make it possible for a given precision to reduce significantly the number of unknowns of the linear system to be solved. DD methods are then used as preconditioners for the iterative solver: the problem defined on the global domain is decomposed into smaller problems on subdomains, which can be solved concurrently and using robust direct solvers. The design, implementation and analysis of both these methods are particularly challenging for Maxwell’s equations. FEs suited for the approximation of the electric field are the curl-conforming or edge finite elements. Here, we revisit the classical degrees of freedom (dofs) defined by Nédélec to obtain a new more friendly expression in terms of the chosen high order basis functions. Moreover, we propose a general technique to restore duality between dofs and basis functions. We explicitly describe an implementation strategy, which we embedded in the open source language FreeFem++. Then we focus on the preconditioning of the linear system, starting with a numerical validation of a one-level overlapping Schwarz preconditioner, with impedance transmission conditions between subdomains. Finally, we investigate how two-level preconditioners recently analyzed for the Helmholtz equation work in the Maxwell case, both from the theoretical and numerical points of view. We apply these methods to the large scale problem arising from the modeling of a microwave imaging system, for the detection and monitoring of brain strokes. In this application accuracy and computing speed are indeed of paramount importance.
|
Page generated in 0.0922 seconds