Le démantèlement des réacteurs Uranium Naturel Graphite Gaz génèrera en France environ 23 000 tonnes de déchets radioactifs graphités. La gestion appropriée de ces déchets nécessite de déterminer leur inventaire radiologique et de disposer de données fiables sur la localisation et la spéciation des radionucléides (RN). Le 14C a été identifié comme RN d'intérêt pour le stockage en raison de son inventaire initial important et du risque de présence d'une fraction organique mobile dans l'environnement, lors de la phase de stockage. A ce titre, l'objectif de cette thèse CIFRE, réalisée en partenariat avec EDF, est de mettre en œuvre des études expérimentales permettant de simuler et d'évaluer l'impact de la température, de l'irradiation et de la corrosion radiolytique du graphite sur le comportement migratoire en réacteur du 14C et de son précurseur azote. Les données ainsi acquises sont intégrées dans la deuxième partie de ce travail consacrée à l'étude d'un procédé de décontamination thermique du graphite en présence de vapeur d'eau. La démarche expérimentale consiste à simuler respectivement la présence de 14C et de 14N par implantation ionique de 13C et d'azote (14N ou 15N) dans un graphite de rondin SLA2 vierge. Cette étude montre que dans la gamme de températures du graphite en réacteur (100 - 500°C) et en absence de corrosion radiolytique, le 13C est stable thermiquement quel que soit l'état de structure du graphite. En revanche, les expériences d'irradiation du graphite chauffé à 500°C au contact d'un gaz représentatif du caloporteur radiolysé montrent le rôle synergique joué par les espèces oxydantes et l'endommagement du graphite favorisant la mobilité du 13C par gazéification des surfaces et/ou oxydation sélective du 13C plus faiblement lié. En ce qui concerne l'azote constitutif, il a tout d'abord été démontré que sa concentration en surface atteint plusieurs centaines de ppm (< 500 ppm at.) et décroît en profondeur jusqu'à environ 160 ppm at.. Contrairement au 13C implanté, l'azote implanté migre à 500°C lorsque le graphite est fortement déstructuré (environ 8 dpa) alors qu'il reste stable pour un taux de déstructuration moindre (0,14 dpa). Les expériences montrent également le rôle synergique des excitations électroniques et de la température qui accélèrent le transport de l'azote vers la surface du graphite. Cette migration de l'azote semble se faire sous forme moléculaire d'espèces C-N, C=N voire C N. Après huit heures d'irradiation ces espèces ne sont toutefois pas ou peu relâchées et restent bloquées à la surface. L'étude du procédé de décontamination thermique en présence de vapeur d'eau a nécessité la mise en place d'un dispositif de thermogravimétrie couplé à un générateur de vapeur d'eau ainsi que l'optimisation des paramètres de l'étude. Les influences de la température (700°C et 900°C) et de l'humidité relative (50 % HR et 90 % HR) ont été testées à un débit de gaz humide fixe de 50 mL/min. Dans ces conditions, l'oxydation sélective du carbone implanté a été confirmée.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00954466 |
Date | 15 October 2013 |
Creators | Silbermann, Gwennaëlle |
Publisher | Université Claude Bernard - Lyon I |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds