Return to search

Blazars as Sources of Neutrinos and Ultra-high-energy Cosmic Rays

Der Ursprung ultra-hochenergetischer kosmischer Strahlung (UHECRs) ist immer noch unbekannt. Neutrinoteleskope wie IceCube messen einen Fluss hochenergetischer astrophysikalischer Neutrinos, dessen erwarteter Ursprung Wechselwirkungen kosmischer Strahlung (CR) ist. Jedoch scheinen die Ankunftsrichtungen der beobachteten Neutrinos nicht signifikant mit den Koordinaten bekannter, hochenergetischer astrophysikalischer Quellen zu korrelieren. Wir tragen zum Verständnis dieses Problems durch die Untersuchung von Blazaren, eine Klasse aktiver Galaxienkerne, bei. Motiviert durch Hinweise, dass ein Teil der UHECRs schwerer als Protonen ist, modellieren wir die Wechselwirkungen einer Population beschleunigter Kerne mit den umgebenden Photonfelder in Blazaren. Wir folgern, dass in Blazaren niedriger Luminosität beschleunigte CRs nicht effizient wechselwirken. In hellen Blazaren sind photo-hadronische Wechselwirkungen effizient, was zu starker Neutrinoproduktion und zur Entwicklung einer nuklearen Kaskade führt. Wir berechnen die Neutrinoemission der gesamten Verteilung von Blazaren, und folgern, dass eine Population niedriger Luminosität, die derzeit nicht beobachtet, aber theoretisch erwartet wird, den gesamten IceCube-Fluss bei den höchsten Energien erklären kann. Weiterhin modellieren wir den Blazar TXS 0506+056, aus dessen Richtung ein Neutrino während einer Phase erhöhter elektromagnetischer Aktivität detektiert wurde. Wir testen die Hypothese, dass ein Signal von 13+/-5 Neutrinos, die in IceCube aus der selben Richtung im Jahr 2014-15 gemessen wurden, von der selben Quelle stammt. Unser Modell kann höchstens 5 Ereignisse erklären. Schließlich untersuchen wir das erste beobachte Ereignis verschmelzender Neutronensterne, GW170817, als CR-Beschleuniger. Wir modellieren die Quelle und zeigen, dass Radio- und Röntgenmessungen strikte Beschränkungen der magnetischen Feldstärke nach sich ziehen. Wir zeigen, dass diese Quelle in der Lage ist, CRs zu emittieren. / The origin of ultra-high-energy cosmic rays (UHECRs) is still unclear. Neutrino telescopes like IceCube have observed a flux of high-energy cosmic neutrinos, expected to originate in cosmic ray (CR) interactions. However, their arrival directions do not statistically correlate with the positions of known high-energy astrophysical sources. In this thesis we explore blazars, a class of active galaxies, as potential UHECR accelerators. Motivated by evidence that a fraction of the UHECRs are heavier than protons, we model the interactions of CR nuclei with the photon fields present in blazars, in order to estimate the emitted neutrino and UHECR spectrum. We conclude that in dim blazars, accelerated CRs do not interact efficiently due to the low photon density, but instead escape the source unscathed. In bright blazars, photo-hadronic interactions are more efficient, leading to abundant production of neutrinos and lighter nuclei. We use this model to quantify the neutrino emission from the entire cosmological blazar population. We conclude that low-luminosity blazars currently unobserved but expected theoretically, can explain the entire IceCube flux at the highest energies. We then focus on blazar TXS 0506+056, from whose direction a neutrino was recently detected during an electromagnetic flaring state. We test the hypothesis that a signal of 13+/-5 neutrinos observed by IceCube from the same direction in 2014-15 may have originated in the same source. Given the constraints from multi-wavelength observations, this model can explain at most 5 neutrino events. Finally, we study the remnant of the first neutron star merger ever observed, object GW170817. We model the particle interactions in the source and show that multi-wavelength observations can provide a constraint on the magnetic field strength. We estimate that this source may be an efficient CR emitter, which shows the importance of future multi-messenger observations to better constrain this source type.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/21365
Date23 October 2019
CreatorsRodrigues, Xavier
ContributorsWinter, Walter, Franckowiak, Anna, Böttcher, Markus
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY-NC 3.0 DE) Namensnennung - Nicht kommerziell 3.0 Deutschland, http://creativecommons.org/licenses/by-nc/3.0/de/

Page generated in 0.0035 seconds