Return to search

Electrical, Optical and Thermal Investigations of Cobalt Oxide-Antimony Doped Tin Oxide (CoO-ATO) Thin Films and Nanofiber Membranes

The main aim of this thesis work is to investigate the electrical, optical and thermal impact characteristics of cobalt oxide doped antimony tin oxide (CoO-ATO) in the form of thin films and nanofiber membranes. CoO-ATO is a novel composite material that has the potential to be used as reinforced aircraft coatings, military garment coatings, or more specifically as an anti-reflective (AR) top coating for photovoltaic (PV) cells. This work will be critical in determining the effectiveness of using a CoO-ATO layer in these applications. Electrospun nanofibers and spin coated thin films consisting of a polymeric solution of CoO-ATO will be used. Thin films are created using spin coating techniques, and nanofiber membranes are created using an electrospinning technique. Polystyrene (PS) will be used as a solute, and chloroform as a solvent, to create the solution. It is hypothesized that coatings of this material will have improved optical characteristics as compared to traditional ATO coatings and minimum impact from thermal cycling making it a favorable candidate for PV cells. This work will do an electrical, optical and thermal cycling impact characterization of CoO-ATO thin films and nanofiber membranes for a doping range of x% CoO where x ranged from 0.2

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-8638
Date02 November 2017
CreatorsRoy, Nirmita
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations

Page generated in 0.0017 seconds