Sen1 est une hélicase ARN/ADN impliquée dans la protection du génome de la levure en résolvant les hybrides ARN/ADN et dans la terminaison de la transcription de courts ARN non codants. Malgré la demande cellulaire généralisée pour l'action Sen1, son abondance cellulaire est très faible, ce qui suggère que des mécanismes régulent les niveaux de protéine Sen1 dans la cellule. Nous avons confirmé que Sen1 est dégradé via une voie dépendante du protéasome. Ce mécanisme dépend de l’activité catalytique de Glc7, une protéine phosphatase dont il a été précédemment démontré qu’elle déphosphoryle Sen1 in vitro et qu’elle interagit avec Sen1 via un motif RVxF selon des expériences à deux hybrides.
Notre hypothèse de travail est que Glc7 contrôle les niveaux de protéine Sen1 via la déphosphorylation d'un phospho-dégron. Fait intéressant, un site potentiel dans la région N-terminale de Sen1 (sérine 863) qui peut fonctionner comme un phospho-dégron a été identifié dans une analyse à l'échelle du protéome de la co-occurrence de phosphorylation et d'ubiquitylation. Afin d'identifier les sites de phosphorylation Sen1 qui sont enrichis en l'absence de Glc7, nous avons réalisé une immunoprécipitation de Sen1 suivie d'une spectrométrie de masse. Cette analyse a identifié un site de phosphorylation dans Sen1 à la sérine 1505 qui pourrait agir comme un site de dégron potentiel. A noter que ce site, a également été signalé dans les études antérieures phosphoprotéomiques sur la levure. De plus, l'interaction entre Sen1 et Glc7 et l’importance du motif RVxF (par la mutation du résidu F2003) pour cette interaction ont été confirmée par co-immunoprécipitation. De manière surprenante, la prévention de cette interaction n'affecte pas la stabilité de Sen1 ou la croissance cellulaire.
Dans l'ensemble, nous avons identifié un petit groupe de sites de phosphorylation Sen1 avec une pertinence biologique potentielle. Nos résultats confirment également que la mutation du motif RVxF de Sen1 altère l'interaction avec Glc7 in vivo. Ces données approfondissent notre compréhension de la régulation de la protéine Sen1 par Glc7 dans les cellules de levure qui peuvent fournir des indices sur le rôle de la sénataxine, orthologue humaine, dans les troubles neurodégénératifs. / Sen1 is an RNA/DNA helicase involved in protecting the yeast genome by resolving RNA/DNA hybrids and in the transcription termination of short non-coding RNAs. Despite the widespread cellular demand for Sen1 action, its cellular abundance is very low, suggesting that mechanisms regulate Sen1 protein levels in the cell. We have confirmed that Sen1 is degraded via a proteasome-dependent pathway. This mechanism depends on the catalytic activity of Glc7, a protein phosphatase that was previously shown to dephosphorylate Sen1 in vitro, and to interact with Sen1 through an ‘RVxF’ motif.
Our working hypothesis is that Glc7 controls Sen1 protein levels via dephosphorylation of a phospho-degron. Interestingly, a potential site in the N-terminal region of Sen1 (serine 863) that may work as a phospho-degron has been identified in a proteome-wide analysis of phosphorylation and ubiquitylation cross-talk. In order to identify Sen1 phosphorylation sites enriched in the absence of Glc7, we conducted immunoprecipitation of Sen1 followed by mass spectrometry. This analysis identified one phosphorylation site within Sen1 at serine 1505 that could act as a potential degron site. Note that this site has also been reported in previous phosphoproteomic studies on yeast. Furthermore, the interaction between Sen1 and Glc7 and the importance of the RVxF motif (by mutation of residue F2003) for this interaction was confirmed by co-immunoprecipitation. Surprisingly, prevention of this interaction does not affect the stability of Sen1 or cell growth.
Overall, we have identified a small group of Sen1 phosphorylation sites with potential biological relevance. Our findings also confirm that mutating the RVxF motif of Sen1 impairs the interaction with Glc7 in vivo. These data further our understanding of Sen1 protein regulation by Glc7 in yeast cells that may provide clues to the role of senataxin, human orthologue, in neurodegenerative disorders.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/25880 |
Date | 04 1900 |
Creators | Aleman Alvarado, Marjorie Andrea |
Contributors | Robert, François |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0028 seconds