In recent years, the wireless communication operators use more and more systems based on the transmission and reception of EM waves. As a result, more and more base stations are being installed on the rooftop of existing buildings in densely populated areas. The prevailing of wireless communications has prompted the public¡¦s concern of the health issue. To date, the most prominent and scientifically verifiable biological effect of EM waves is the heating effect. In order to maintain the users¡¦ health from the over-heating due to excessive use, analysis of the temperature distribution inside the human body is also very critical as well as the SAR guidelines.
The purpose of this thesis is to investigate the SAR values and temperature distribution inside the human head, under the EM exposure of mobile communication base station and handset based on the use of finite-difference time-domain (FDTD) method. In general, we assumed that the far-field exposure of base station are uniform plane-wave exposures. The total-field / scattered-field (TF/SF) formulation implements a compact uniform plane-wave source permitting FDTD simulations to accurately predict the SAR distribution in the human head due to uniform plane-wave exposures. Furthermore, this thesis investigates the effects of the rectangular frames of the metallic spectacles at 900MHz and 1.8 GHz for the uniform plane wave.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0815105-170000 |
Date | 15 August 2005 |
Creators | Chen, Yu-chi |
Contributors | Ming-cheng Liang, Tzyy-sheng Horng, Tzong-lin Wu, Chih-wen Kuo, Ken-huang Lin |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0815105-170000 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.0021 seconds