Return to search

Adaptation via des inéqualités d'oracle dans le modèle de regression avec design aléatoire / Adaptation via oracle inequality in regression model with random design

À partir des observations Z(n) = {(Xi, Yi), i = 1, ..., n} satisfaisant Yi = f(Xi) + ζi, nous voulons reconstruire la fonction f. Nous évaluons la qualité d'estimation par deux critères : le risque Ls et le risque uniforme. Dans ces deux cas, les hypothèses imposées sur la distribution du bruit ζi serons de moment borné et de type sous-gaussien respectivement. En proposant une collection des estimateurs à noyau, nous construisons une procédure, qui est initié par Goldenshluger et Lepski, pour choisir l'estimateur dans cette collection, sans aucune condition sur f. Nous prouvons ensuite que cet estimateur satisfait une inégalité d'oracle, qui nous permet d'obtenir les estimations minimax et minimax adaptatives sur les classes de Hölder anisotropes. / From the observation Z(n) = {(Xi, Yi), i = 1, ..., n} satisfying Yi = f(Xi) + ζi, we would like to approximate the function f. This problem will be considered in two cases of loss function, Ls-risk and uniform risk, where the condition imposed on the distribution of the noise ζi is of bounded moment and of type sub-gaussian, respectively. From a proposed family of kernel estimators, we construct a procedure, which is initialized by Goldenshluger and Lepski, to choose in this family a final estimator, with no any assumption imposed on f. Then, we show that this estimator satisfies an oracle inequality which implies the minimax and minimax adaptive estimation over the anisotropic Hölder classes.

Identiferoai:union.ndltd.org:theses.fr/2014AIXM4716
Date21 May 2014
CreatorsNguyen, Ngoc Bien
ContributorsAix-Marseille, Lepski, Oleg V.
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds