Spelling suggestions: "subject:"design aléatoire"" "subject:"1design aléatoire""
1 |
Régression non-paramétrique et information spatialement inhomogèneGaiffas, Stéphane 08 December 2005 (has links) (PDF)
Nous étudions l'estimation non-paramétrique d'un signal à partir de<br />données bruitées spatialement inhomogènes (données dont la quantité<br />varie sur le domaine d'estimation). Le prototype d'étude est le modèle<br />de régression avec design aléatoire. Notre objectif est de comprendre<br />les conséquences du caractère inhomogène des données sur le problème<br />d'estimation dans le cadre d'étude minimax. Nous adoptons deux points<br />de vue : local et global. Du point de vue local, nous nous intéressons<br />à l'estimation de la régression en un point avec peu ou beaucoup de<br />données. En traduisant cette propriété par différentes hypothèses sur<br />le comportement local de la densité du design, nous obtenons toute une<br />gamme de nouvelles vitesses minimax ponctuelles, comprenant des<br />vitesses très lentes et des vitesses très rapides. Puis, nous<br />construisons une procédure adaptative en la régularité de la<br />régression, et nous montrons qu'elle converge avec la vitesse minimax<br />à laquelle s'ajoute un coût minimal pour l'adaptation locale. Du point<br />de vue global, nous nous intéressons à l'estimation de la régression<br />en perte uniforme. Nous proposons des estimateurs qui convergent avec<br />des vitesses dépendantes de l'espace, lesquelles rendent compte du<br />caractère inhomogène de l'information dans le modèle. Nous montrons<br />l'optimalité spatiale de ces vitesses, qui consiste en un renforcement<br />de la borne inférieure minimax classique pour la perte uniforme. Nous<br />construisons notamment un estimateur asymptotiquement exact sur une<br />boule de Hölder de régularité quelconque, ainsi qu'une bande de<br />confiance dont la largeur s'adapte à la quantité locale de données.
|
2 |
Adaptation via des inéqualités d'oracle dans le modèle de regression avec design aléatoire / Adaptation via oracle inequality in regression model with random designNguyen, Ngoc Bien 21 May 2014 (has links)
À partir des observations Z(n) = {(Xi, Yi), i = 1, ..., n} satisfaisant Yi = f(Xi) + ζi, nous voulons reconstruire la fonction f. Nous évaluons la qualité d'estimation par deux critères : le risque Ls et le risque uniforme. Dans ces deux cas, les hypothèses imposées sur la distribution du bruit ζi serons de moment borné et de type sous-gaussien respectivement. En proposant une collection des estimateurs à noyau, nous construisons une procédure, qui est initié par Goldenshluger et Lepski, pour choisir l'estimateur dans cette collection, sans aucune condition sur f. Nous prouvons ensuite que cet estimateur satisfait une inégalité d'oracle, qui nous permet d'obtenir les estimations minimax et minimax adaptatives sur les classes de Hölder anisotropes. / From the observation Z(n) = {(Xi, Yi), i = 1, ..., n} satisfying Yi = f(Xi) + ζi, we would like to approximate the function f. This problem will be considered in two cases of loss function, Ls-risk and uniform risk, where the condition imposed on the distribution of the noise ζi is of bounded moment and of type sub-gaussian, respectively. From a proposed family of kernel estimators, we construct a procedure, which is initialized by Goldenshluger and Lepski, to choose in this family a final estimator, with no any assumption imposed on f. Then, we show that this estimator satisfies an oracle inequality which implies the minimax and minimax adaptive estimation over the anisotropic Hölder classes.
|
3 |
Quelques contributions en classification, régression et étude d'un problème inverse en financeMonnier, Jean-Baptiste 06 December 2011 (has links) (PDF)
On s'intéresse aux problèmes de régression, classification et à un problème inverse en finance. Nous abordons dans un premier temps le problème de régression en design aléatoire à valeurs dans un espace euclidien et dont la loi admet une densité inconnue. Nous montrons qu'il est possible d'élaborer une stratégie d'estimation optimale par projections localisées sur une analyse multi-résolution. Cette méthode originale offre un avantage calculatoire sur les méthodes d'estimation à noyau traditionnellement utilisées dans un tel contexte. On montre par la même occasion que le classifieur plug-in construit sur cette nouvelle procédure est optimal. De plus, il hérite des avantages calculatoires mentionnés plus haut, ce qui s'avère être un atout crucial dans de nombreuses applications. On se tourne ensuite vers le problème de régression en design aléatoire uniformément distribué sur l'hyper-sphère et on montre comment le tight frame de needlets permet de généraliser les méthodes traditionnelles de régression en ondelettes à ce nouveau contexte. On s'intéresse finalement au problème d'estimation de la densité risque-neutre à partir des prix d'options cotés sur les marchés. On exhibe une décomposition en valeurs singulières explicite d'opérateurs de prix restreints et on montre qu'elle permet d'élaborer une méthode d'estimation de la densité risque-neutre qui repose sur la résolution d'un simple programme quadratique.
|
4 |
Estimation non paramétrique et problèmes inversesWiller, Thomas 08 December 2006 (has links) (PDF)
On se place dans le cadre de<br />l'estimation non paramétrique pour les problèmes inverses, où une<br />fonction inconnue subit une transformation par un opérateur<br />linéaire mal posé, et où l'on en observe une version bruitée par<br />une erreur aléatoire additive. Dans ce type de problèmes, les<br />méthodes d'ondelettes sont très utiles, et ont été largement<br />étudiées. Les méthodes développées dans cette thèse s'en<br />inspirent, mais consistent à s'écarter des bases d'ondelettes<br />"classiques", ce qui permet d'ouvrir de nouvelles perspectives<br />théoriques et pratiques. Dans l'essentiel de la thèse, on utilise<br />un modèle de type bruit blanc. On construit des estimateurs<br />utilisant des bases qui d'une part sont adaptées à l'opérateur, et<br />d'autre part possèdent des propriétés analogues à celles des<br />ondelettes. On en étudie les propriétés minimax dans un cadre<br />large, et l'on implémente ces méthodes afin d'en étudier leurs<br />performances pratiques. Dans une dernière partie, on utilise un<br />modèle de regression en design aléatoire, et on étudie les<br />performances numériques d'un estimateur reposant sur la<br />déformation des bases d'ondelettes.
|
Page generated in 0.0409 seconds