• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Régression non-paramétrique et information spatialement inhomogène

Gaiffas, Stéphane 08 December 2005 (has links) (PDF)
Nous étudions l'estimation non-paramétrique d'un signal à partir de<br />données bruitées spatialement inhomogènes (données dont la quantité<br />varie sur le domaine d'estimation). Le prototype d'étude est le modèle<br />de régression avec design aléatoire. Notre objectif est de comprendre<br />les conséquences du caractère inhomogène des données sur le problème<br />d'estimation dans le cadre d'étude minimax. Nous adoptons deux points<br />de vue : local et global. Du point de vue local, nous nous intéressons<br />à l'estimation de la régression en un point avec peu ou beaucoup de<br />données. En traduisant cette propriété par différentes hypothèses sur<br />le comportement local de la densité du design, nous obtenons toute une<br />gamme de nouvelles vitesses minimax ponctuelles, comprenant des<br />vitesses très lentes et des vitesses très rapides. Puis, nous<br />construisons une procédure adaptative en la régularité de la<br />régression, et nous montrons qu'elle converge avec la vitesse minimax<br />à laquelle s'ajoute un coût minimal pour l'adaptation locale. Du point<br />de vue global, nous nous intéressons à l'estimation de la régression<br />en perte uniforme. Nous proposons des estimateurs qui convergent avec<br />des vitesses dépendantes de l'espace, lesquelles rendent compte du<br />caractère inhomogène de l'information dans le modèle. Nous montrons<br />l'optimalité spatiale de ces vitesses, qui consiste en un renforcement<br />de la borne inférieure minimax classique pour la perte uniforme. Nous<br />construisons notamment un estimateur asymptotiquement exact sur une<br />boule de Hölder de régularité quelconque, ainsi qu'une bande de<br />confiance dont la largeur s'adapte à la quantité locale de données.

Page generated in 0.0575 seconds