Spelling suggestions: "subject:"régression een design aléatoire"" "subject:"régression enn design aléatoire""
1 |
Quelques contributions en classification, régression et étude d'un problème inverse en financeMonnier, Jean-Baptiste 06 December 2011 (has links) (PDF)
On s'intéresse aux problèmes de régression, classification et à un problème inverse en finance. Nous abordons dans un premier temps le problème de régression en design aléatoire à valeurs dans un espace euclidien et dont la loi admet une densité inconnue. Nous montrons qu'il est possible d'élaborer une stratégie d'estimation optimale par projections localisées sur une analyse multi-résolution. Cette méthode originale offre un avantage calculatoire sur les méthodes d'estimation à noyau traditionnellement utilisées dans un tel contexte. On montre par la même occasion que le classifieur plug-in construit sur cette nouvelle procédure est optimal. De plus, il hérite des avantages calculatoires mentionnés plus haut, ce qui s'avère être un atout crucial dans de nombreuses applications. On se tourne ensuite vers le problème de régression en design aléatoire uniformément distribué sur l'hyper-sphère et on montre comment le tight frame de needlets permet de généraliser les méthodes traditionnelles de régression en ondelettes à ce nouveau contexte. On s'intéresse finalement au problème d'estimation de la densité risque-neutre à partir des prix d'options cotés sur les marchés. On exhibe une décomposition en valeurs singulières explicite d'opérateurs de prix restreints et on montre qu'elle permet d'élaborer une méthode d'estimation de la densité risque-neutre qui repose sur la résolution d'un simple programme quadratique.
|
2 |
Estimation non paramétrique et problèmes inversesWiller, Thomas 08 December 2006 (has links) (PDF)
On se place dans le cadre de<br />l'estimation non paramétrique pour les problèmes inverses, où une<br />fonction inconnue subit une transformation par un opérateur<br />linéaire mal posé, et où l'on en observe une version bruitée par<br />une erreur aléatoire additive. Dans ce type de problèmes, les<br />méthodes d'ondelettes sont très utiles, et ont été largement<br />étudiées. Les méthodes développées dans cette thèse s'en<br />inspirent, mais consistent à s'écarter des bases d'ondelettes<br />"classiques", ce qui permet d'ouvrir de nouvelles perspectives<br />théoriques et pratiques. Dans l'essentiel de la thèse, on utilise<br />un modèle de type bruit blanc. On construit des estimateurs<br />utilisant des bases qui d'une part sont adaptées à l'opérateur, et<br />d'autre part possèdent des propriétés analogues à celles des<br />ondelettes. On en étudie les propriétés minimax dans un cadre<br />large, et l'on implémente ces méthodes afin d'en étudier leurs<br />performances pratiques. Dans une dernière partie, on utilise un<br />modèle de regression en design aléatoire, et on étudie les<br />performances numériques d'un estimateur reposant sur la<br />déformation des bases d'ondelettes.
|
Page generated in 0.0757 seconds