Les pérovskites hybrides célèbrent cette année leurs 10e anniversaire dans le domaine du photovoltaïque. En plus de la progression inégalée des rendements des cellules solaires, les pérovskites ont des propriétés optoélectroniques ajustables et peuvent être fabriquées par des procédés bas coûts, ce qui en fait de sérieuses candidates pour les cellules solaires multijunctions. Le réseau cristallin caractéristique des pérovskites hybrides offre une certaine liberté, supportant l’introduction partielle de cations et d’ions halogénures multiples. L’ajustement de la composition d’un matériau pérovskite se traduit par un ajustement de ces propriétés électroniques dont notamment sa structure de bandes. En adaptant la composition il est possible d’obtenir un matériau pérovskite avec une bande interdite de 1,7 eV qui serait parfaitement adapté pour une cellule tandem à base de Silicium cristallin. Les films minces de pérovskites peuvent être fabriqués par une grande diversité de techniques de dépôt, à partir de précurseurs ‘bon marché’ (CH3NH3I et PbI2 par exemple), par des procédés à basse température. Même si la grande majorité des films de pérovskites sont obtenus par la méthode d’enduction centrifuge, celle-ci ne permet pas l’obtention de films homogènes, sur grandes surfaces et de façon répétable. Etant donné l’enjeu industriel qui attend les pérovskites et l’intérêt croissant pour les structures tandems Silicium/Pérovskite, les méthodes sans solvant semblent plus adaptées. Déjà très largement utilisé dans l’industrie des OLEDs, le procédé de coévaporation thermique semble constituer une solution commercialement viable. Publiée pour la première fois en 2013, la synthèse par coévaporation des pérovskites est pour le moment encore étudiée par peu de groupes, car nécessitant des équipements plus coûteux. La présente thèse vise à mettre en place et développer la technique de coévaporation pour la fabrication de films de pérovskites hybrides pour des applications en cellules solaires.Afin d’évaluer la faisabilité du procédé, nous avons commencé notre travail sur un réacteur de démonstration, ce qui nous a permis d’appréhender la réponse à la sublimation des deux précurseurs. Nous avons très vite identifié le comportement du sel organique CH3NH3I comme étant problématique car difficilement contrôlable (s’évaporant sous forme de « nuage »), comme nous l’avions lu dans la littérature. En six mois d’utilisation de ce réacteur, nous avons fabriqué des films de pérovskites ayant permis d’atteindre des rendements de 9% sur des cellules solaires, malheureusement avec une faible reproductibilité (que nous expliquons en partie par le caractère aléatoire de l’évaporation du composé organique CH3NH3I). Nous nous sommes trouvés dans l’incapacité de comprendre plus en profondeur le procédé à cause d’un manque de fonctionnalités de l’équipement. Grâce à ces différents retours d’expérience nous avons pu concevoir, en étroite collaboration avec l’équipementier, un réacteur semi-industriel dédié à la fabrication de films de perovskites par coévaporation. Suite à sa mise en place, nous nous somme focalisé sur la problématique de la reproductibilité dans nos expériences en essayant de diminuer l’impact du nuage organique. Bien que les efficacités atteintes en cellules solaires pour des films coévaporés fussent moindres que pour des films déposés par la technique classique d’enduction centrifuge, nous soupçonnions néanmoins une meilleure homogénéité des films obtenus par voie sèche. Nous avons ainsi intégré à cette thèse une étude comparative voie liquide/voie sèche par le biais d’une technique de spectromicroscopie rayons X en Synchrotron. / Hybrid perovskites celebrate this year their 10-year anniversary in the photovoltaic field. Besides the unprecedented rise in solar cells efficiencies, perovskite materials have tunable optical properties and can be manufactured at low cost, making them very promising candidates for the high efficiency, multijunction solar cells strategy. Perovskite crystal structure offers a relative degree of freedom, allowing the partial integration of multiple cations and halide ions. This chemical composition tuning translates into a bandgap tuning. Through fine chemical engineering, the 1.7 eV requirement for a c-Si-based tandem device can be achieved. Perovskite thin films can be prepared by a large variety of deposition techniques, from low cost precursors (CH3NH3I and PbI2 for instance), through low-temperature processes. While most of the reported works on perovskite thin films are based on the basic wet-process spincoating technique, this latter hardly allows large scale, homogeneous and reproducible deposition. With the future challenge of industrialization and the increasing interest for the Silicon/Perovskite tandem approach, solvent-free methods appear more suitable. Already widely implemented in the OLED industry, coevaporation stands as a viable option for perovskites’ future. Reported for the first time in 2013, coevaporated perovskites are still scarcely studied compared to wet-based techniques, requiring more expensive set ups. In the present thesis, we implemented and developed the coevaporation process to fabricate perovskite thin films for solar cells applications.Starting off on a proof-of-concept reactor to assess the feasibility of the technique, we got accustomed to the perovskite precursors behaviour and identify very early on the organic precursor to be hardly manageable, as reported in the literature. In six months, we were nonetheless able to obtain nice perovskite films leading to 9% efficient photovoltaic devices, unfortunately with a poor reproducibility that we think to be partially due to the cloud vapour behaviour of CH3NH3I. We eventually found ourselves missing some features on the equipment, preventing us from accurately get a grasp on the process. From this feedback we then designed, hand in hand with the manufacturer, a dedicated semi-industrial equipment for perovskite coevaporation. Following its implementation, we then focused on establishing the reproducibility of the method, trying to mitigate the parasitic effect of the organic compound. Even though the efficiencies in solar cells were still slightly lower for coevaporated perovskites, with respect to classical spincoated ones, we expected the material homogeneity to be in favour of the vacuum-based process. We then eventually integrated to this thesis a comparative study between wet- and dry-processed perovskite films using a Synchrotron-based X-ray spectromicroscopy technique.
Identifer | oai:union.ndltd.org:theses.fr/2019SACLX079 |
Date | 08 October 2019 |
Creators | Dindault, Chloe |
Contributors | Université Paris-Saclay (ComUE), Bonnassieux, Yvan, Tondelier, Denis |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds