Return to search

Géométrie des bords : compactifications différentiables et remplissages holomorphes

La première partie de la thèse concerne certaines compactifications. On se donne un espace symétrique à courbure négative et on cherche à déterminer ses compactifications différentiables, c'est-à-dire les plongement de l'espace dans une variété à bord pour lesquels l'action des isométries se prolonge de façon différentiable. Les résultats principaux sont : la classification de ces compactifications dans le cas de l'espace hyperbolique réel, et l'inexistence d'une telle compactification dans le cas des espaces de rang supérieur.<br /> La seconde partie concerne les remplissages holomorphes. On se donne une variété CR compacte M et un sous-groupe d'automorphismes F. La question est alors de déterminer quelles sont les variétés compactes à bord X dont le bord est M et telles que l'action de F se prolonge par biholomorphismes sur tout X. On montre sous des hypothèses de convexité, de dimension et de taille de F un résultat d'unicité (à éclatement près).

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00120345
Date01 December 2006
CreatorsKloeckner, Benoit
PublisherEcole normale supérieure de lyon - ENS LYON
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds