Dans le cadre de cette thèse, on s'intéresse à la dynamique de quelques fluides complexes. D'une part on étudie la dynamique des cristaux liquides nématiques, en utilisant les modèles proposés par Ericksen et Leslie, Beris et Edwards, Qian et Sheng. D'autre part, on analyse un fluide complexe dont la dynamique dépend de la température et qui est modélisée par le système de Boussinesq. Les cristaux liquides sont des matériaux avec une phase de la matière intermédiaire entre les liquides et les solides qui sont des phases plus connues. Dans cette thèse, on s'intéresse à l'étude du problème de Cauchy associé à chaque système modélisant leurs hydrodynamiques. Tout d'abord on obtient des résultats d'existence et d'unicité de solutions faibles ou classiques, solutions qui sont globales en temps. Ensuite, on analyse la propagation de la régularité des données initiales pour ces solutions. Le cadre fonctionnel adopté pour les données initiales est celui des espaces de Besov homogènes, généralisant des classes d'espaces mieux connues : les espaces de Soboloev homogènes et les espaces de Hölder. Le système Ericksen-Leslie est considéré dans la version simplifiée proposée par F. Lin et C. Liu, version qui préserve les principales difficultés du système initial. On étudie ce problème en dimension supérieure ou égale à deux. On considère le système dans le cas inhomogène, c'est-à dire avec une densité variable. De plus, on s'intéresse au cas d'une densité de faible régularité qui est autorisée à présenter des discontinuités. Donc, le résultat que l'on démontre peut être mis en relation avec la dynamique des mélanges de nématiques non miscibles. On démontre l'existence globale en temps de solutions faibles de régularité invariante par changement d'échelle, en supposant une condition de petitesse sur les données initiales dans des espaces de Besov critiques. On démontre aussi l'unicité de ces solutions si de plus on suppose une condition supplémentaire de régularité pour les données initiales. Le système Beris-Edwards est analysé dans le cas bidimensionnel. On obtient l'existence et l'unicité de solutions faibles globales en temps, lorsque les données initiales sont dans des espaces de Sobolev spécifiques (sans condition de petitesse). Le niveau de régularité de ces espaces fonctionnels est adapté pour bien définir les solutions faibles. L'unicité est une question délicate et demande une estimation doublement logarithmique pour une norme sur la différence entre deux solutions dans un espace de Banach convenable. Le lemme d'Osgood permet alors de conclure à l'unicité de la solution. On obtient également un résultat de propagation de régularité d'indice positif. Afin de prendre en compte l'inertie des molécules, on considère aussi le modèle proposé par Qian et Sheng, et on étudie le cas de la dimension supérieure ou égale à deux. Ce système montre une caractéristique structurale spécifique, plus précisément la présence d'un terme inertiel, ce qui génère des difficultés significatives. On démontre l'existence d'une fonctionnelle de Lyapunov et l'existence et l'unicité de solutions classiques globales en temps, en considérant des données initiales petites. Enfin, on analyse le système de Boussinesq et on montre l'existence et l'unicité de solutions globales en temps. On considère la viscosité en fonction de la température en supposant simplement que la température initiale soit bornée, tandis que la vitesse initiale est dans des espaces de Besov avec indice de régularité critique. Les données initiales ont une composante verticale grande et satisfont à une condition de petitesse spécifique sur les composantes horizontales: elles doivent être exponentiellement petites par rapport à la composante verticale. / The present thesis is devoted to the dynamics of specific complex fluids. On the one hand we studythe dynamics of the so-called nematic liquid crystals, through the models proposed by Ericksen and Leslie, Beris and Edwards, Qian and Sheng.On the other hand we analyze the dynamics of a temperature-dependent complex fluid, whose dynamics is governed by the Boussinesq system.Nematic liquid crystals are materials exhibiting a state of matter between an ordinary fluid and a solid. In this thesis we are interested in studying the Cauchy problem associated to eachsystem modelling their hydrodynamics. At first, we establish some well-posedness results, such asexistence and uniqueness of global-in-time weak or classical solutions. Moreover we also analyzesome dynamical behaviours of these solutions, such as propagations of both higher and lowerregularities.The general framework for the initial data is that of Besov spaces, which extend the most widelyknown classes of Sobolev and Hölder spaces.The Ericksen-Leslie system is studied in a simplified form proposed by F. Lin and C. Liu,which retains the main difficulties of the original one. We consider both a two-dimensional and athree-dimensional space-domain. We assume the density to be no constant, i.e. the inhomogeneouscase, moreover we allow it to present discontinuities along an interface so that we can describe amixture of liquid crystal materials with different densities. We prove the existence of global-in-timeweak solutions under smallness conditions on the initial data in critical homogeneous Besov spaces.These solutions are invariant under the scaling behaviour of the system. We also show that theuniqueness holds under a tiny extra-regularity for the initial data.The Beris-Edwards system is analyzed in a two-dimensional space-domain. We achieve existenceand uniqueness of global-in-time weak solutions when the initial data belongs to specific Sobolevspaces (without any smallness condition). The regularity of these functional spaces is suitable inorder to well define a weak solution. We achieve the uniqueness result through a specific analysis,controlling the norm of the difference between to weak solutions and performing a delicate doublelogarithmicestimate. Then, the uniqueness holds thanks to the Osgood lemma. We also achieve aresult about regularity propagation.The Qian-Sheng model is analyzed in a space-domain with dimension greater or equal than two.In this case, we emphasize some important characteristics of the system, especially the presence ofan inertial term, which generates significant difficulties. We perform the existence of a Lyapunovfunctional and the existence and uniqueness of classical solutions under a smallness condition forthe initial data.Finally we deal with the well-posedness of the Boussinesq system. We prove the existence ofglobal-in-time weak solutions when the space-domain has a dimension greater or equal than two.We deal with the case of a viscosity dependent on the temperature. The initial temperature is justsupposed to be bounded, while the initial velocity belongs to some critical Besov Space. The initialdata have a large vertical component while the horizontal components fulfil a specific smallnessconditions: they are exponentially smaller than the vertical component.
Identifer | oai:union.ndltd.org:theses.fr/2016BORD0051 |
Date | 30 May 2016 |
Creators | De Anna, Francesco |
Contributors | Bordeaux, Paicu, Marius-Gheorghe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds