Return to search

Vertical-flow constructed wetlands for the treatment of wastewater and stormwater from combined sewer systems

French vertical-flow constructed wetlands (VFCW) directly treating raw wastewater are known to perform well on for SS, COD and nitrification. They are also known to robustly cope with hydraulic overloads during rainfall events. Although numerous systems have been installed in areas equipped with a combined sewer, the limits of stormwater acceptance remain ill-defined and need to be improved. Looking at the various VFCW designs and usages reported in the literature, it is difficult to draw any consensus on their hydraulic limits. Consequently, designing VFCW to accept hydraulic overloads is a complex task, as local context strongly impacts inlet flows produced during rainfall events. Dynamic models appear a requisite for filter design in such cases. Numerical CW models have essentially focused on horizontal flow, with few attempting to study VFCW dynamics which are more commonly tackled via mechanistic models. Although mechanistic models are powerful tools for describing processes within the VFCW, they are generally too complicated to be readily used by designers. The choice between detailed description and easy handling will depend on the modelling aims. If the aim is a global design tool, simplified models offer a good alternative. However, the simplified models geared to studying VFCW dynamics are extremely reduced. They are easy-handling for design and well-adapted to specific purposes (combined sewer overflow -CSO- treatment) but not necessarily to VFCW treating combined sewer wastewater, where long-term infiltration rates vary significantly. Consequently, this PhD thesis work focused on developing a simplified hydraulic model of VFCW to guide designers through the process of adapting VFCW systems to treat domestic wastewater in both dry and rain events. The simplified model makes it possible to link (i) hydraulics, by simulation of ponding time variations, (ii) biological performances, by establishing "dysfunction alerts" based on treatment performance assessment and variations in online N forms effluent from the young VFCW. These "dysfunction alerts" plot the maximal hydraulic load that a filter can accept without compromising its biological activity. The simplified model was used to model long-term hydraulics in the VFCW (i) to analyze the impact of local context and filter design on hydraulic overload acceptance (using "dysfunction alerts" and bypass discharges) and (ii) to propose VFCW designs for accepting hydraulic overload in different contexts. The modelling demonstrates that VFCW can limit days with bypass discharges to less than 20 times per year without jeopardizing filter performances. Moreover, the most problematic scenario on stormwater treatment remains a watershed with high imperviousness coefficient and low slope under a Bretagne-type climate, demonstrating that the filter is more sensitive to periodicity and duration than to intensity of rainfall events.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00961202
Date30 September 2013
CreatorsArias Lopez, José Luis
PublisherINSA de Lyon
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0024 seconds