Safe whistleblowing within companies could give a more transparent and open society, and keeping the whistleblower safe is key, this has led to a new EU Whistleblowing Directive requiring each organization with more than 249 employees to provide an internal channel for whistleblowing before 17 July 2022. A whistleblowing service within an entity should provide secure communication for the organization and its employees. One way to make whistleblowing more accessible is by providing a service for verbal reporting, for example by recording and sending voice messages. However, ensuring that the speaker is secure and can feel anonymous can be difficult since speech varies between individuals - different accents, pitch, or the speed of the voice are examples of factors that a speaker can be identified by. Common ways of voice anonymization, that you hear on the news for example, can often be backtracked or in other ways be deanonymized such that the speaker’s identity is revealed, especially for people who know the speaker. Today we have many developing technologies, such as machine learning, which could be used to greatly improve anonymity or deanonymization. However, greater anonymity is often costly with regard to the intelligibility and sometimes the naturalness of the voice content. Therefore, we studied and evaluated a number of anonymization methods with respect to anonymity, intelligibility, and overall user-friendliness. The aim of this was to map what anonymization methods are suitable for whistleblowing and implement proof of concepts of such an anonymizer. The results show differences between anonymization methods and that some perform better than others, but in different ways. Different methods should be selected depending on the perceived threat. We designed working proof of concepts that can be used in a whistleblowing service and present when respective solutions could be used. Our work shows ways for securer whistleblowing and will be a basis for future work and implementation for the host company Nebulr. / Säker visselblåsning inom företag skulle kunna ge ett mer transparent och öppet samhälle, och att hålla visselblåsaren säker är fundamentalt viktigt, varpå ett nytt EU-direktiv för visselblåsning har formats. Detta direktiv kräver att varje verksamhet med fler än 249 anställda tillhandahåller en intern kanal för visselblåsning före den 17 juli 2022. En tjänst för visselblåsning inom en verksamhet bör tillhandahålla trygg kommunikation för organisationen och dess anställda. Ett sätt att göra visselblåsning mer tillgängligt är genom att tillhandahålla en tjänst för muntligt rapportering, till exempel genom att spela in och skicka röstmeddelanden. Att se till att talaren kan känna sig anonym och trygg kan dock vara svårt eftersom tal skiljer sig mellan individer – olika dialekter, tonhöjd eller tempo är exempel på faktorer som man kan identifieras genom. Vanliga sätt att anonymisera rösten, som man till exempel hör på nyheterna, kan ofta spåras tillbaka eller på andra sätt deanonymiseras så att identiteten avslöjas, särskilt för personer som känner talaren. Idag har vi många teknologier som fortfarande utvecklas och förbättras i det växande området information och kommunikationsteknik, exempelvis maskininlärning, som kan användas för att förbättra anonymiteten. Men mer anonymitet kommer ofta på bekostnad av förståeligheten och ibland röstens naturlighet. Därför studerade och utvärderade vi olika anonymiseringsmetoder utifrån anonymitet, förståelighet och användarvänlighet överlag. Syftet med detta var att kartlägga vilka anonymiseringsmetoder som är lämpliga för visselblåsning och implementera proof of concepts av anonymiserare. Vårt resultat visar på skillnader mellan olika anonymiseringsmetoder och att vissa metoder presterar bättre än andra, men på olika sätt. Olika metoder bör användas beroende på den upplevda hotbilden och vad man eftersträvar. Vi skapade proof-of-concepts för de metoder vi undersökt och beskriver när och för vilka situationer som respektive metod skulle kunna användas. Vårt arbete visar hur man kan uppnå säkrare visselblåsning och kommer att ligga till grund för framtida utveckling och implementering för företaget Nebulr.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-315049 |
Date | January 2022 |
Creators | Hellman, Erik, Nordstrand, Mattias |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:256 |
Page generated in 0.0024 seconds