Return to search

Untersuchungen an einer Kolbenexpansionsmaschine mit integrierten Wärmeübertragerflächen (Wärmeübertrager-Expander) zur Realisierung eines neuartigen Neon-Tieftemperatur-Prozesses

Viele Anwendungen der Hochtemperatur-Supraleitung arbeiten vorteilhaft im Temperaturbereich zwischen 30 - 50 K. Für diesen Temperaturbereich existieren nur wenige geeignete Kältemaschinen mit kleiner Kälteleistung (1-2 W) u. gutem Wirkungsgrad. Neon ist aufgrund seiner Stoffeigenschaften ein hervorragendes Kältemittel für diesen Temperaturbereich, wie z.B. anhand einer realisierten Joule-Thomson (JT) Demonstrationsanlage deutlich wird. Als Ergebnis einer Prozessanalyse wird ein Kreislauf vorgestellt, der speziell den Eigenschaften von Neon angepasst ist. Durch die Überlagerung von Wärmeübertragung u. arbeitsleistender Expansion sowie der Einbeziehung einer JT-Stufe kann auch mit wenig effizienten Komponenten ein vergleichsweise hoher Gütegrad erreicht werden. Durch die Integration von Wärmeübertragerflächen in eine Kolbenexpansionsmaschine wird ein neues Konzept vorgeschlagen, um Kälte in einem großen Temperaturbereich in vielen Expansionsschritten zu erzeugen, ohne dafür viele Expander zu verwenden. Diese Einheit wird als Wärmeübertrager-Expander (WE) bezeichnet. Mit einem Arbeitsraum in konischer Grundform wird der Wärmeübergangskoeffizient günstig gestaltet u. die Wärmeübergangsfläche vergrößert. Mehrere Versuchsmaschinen wurden untersucht. Anhand der Versuche konnten die wesentlichen Verlustquellen u. Problembereiche identifiziert werden. Es wurde im Rahmen der Versuchsbedingungen nachgewiesen, dass für das vorgesehene Druckverhältnis eine nahe isotherme Expansion u. Kompression möglich ist. Es werden Möglichkeiten zur Verringerung der Längswärmeleitung vorgestellt. Zwei Simulationsprogramme wurden verwendet. Mit Hilfe des Wärmeübertrager-Programms wurden die Wärmeübertragungsvorgänge unter Berücksichtigung der Längswärmeleitung simuliert. Hierbei geht die Expansionsarbeit als stationäre Wärmesenke ein. Der im Ergebnis vorliegende stationäre Temperaturverlauf ist die Grundlage für die Berechnung der Expansionsarbeit unter Berücksichtigung der Realgaseigenschaften im Expander-Programm. Für die Neon-Tieftemperaturvariante wurde eine Grundvariante des WE definiert. Anhand dieser wurde mit Hilfe der Programme der Einfluss verschiedener Parameter auf Kälteleistung u. Gütegrad untersucht. Der WE wird als Teil des beschriebenen Prozesses mit einer JT-Stufe betrachtet. Die Kälteleistung weist sowohl in Abhängigkeit vom Massestrom als auch vom Hub ein Maximum auf. Der Shuttle-Verlust verschiebt durch Wärmetransport mittels des Kolbens die effektive Kälteleistung zu kleineren Hüben. Die durch die Güte (NTU) des JT-Wärmeübertragers bestimmte Eintrittstemperatur des Niederdruckstroms in den WE hat einen großen Einfluss auf die Kälteleistung. Mit steigender Eintrittstemperatur steigen der NTU-Wert für den Arbeitsraum u. somit auch die Kälteleistung. Das Maximum der Kälteleistung stimmt nicht mit dem Optimum für den Gütegrad überein. Der Gütegrad strebt mit sinkenden Masseströmen einem Optimum zu. Durch den zunehmenden Einfluss der Längswärmeleitung u. begrenzt durch die Minimalfüllung der Maschine aufgrund des Schadraumes ergibt sich ein Optimum. Der Einfluss des Massestroms ist entscheidend. Als untergeordnete Größen beeinflussen die Eintrittstemperatur des Niederdruckstroms u. der Hub den optimalen Gütegrad. Der Einfluss der Längswärmeleitung auf Kälteleistung u. Gütegrad wird exemplarisch anhand von vergleichenden Rechnungen gezeigt. Konkret kann für einen Eintrittsdruck von 200 bar, einen Austrittsdruck von 60 bar bei einer Eintrittstemperatur des Niederdruckstroms von 80 K für die Grundvariante eine maximale effektive Kälteleistung von 1,3 W mit einem Massestrom von 0,22 g/ s bei einem Hub von ca. 17 mm ausgewiesen werden. Der effektive Gütegrad für diese Bedingungen beträgt ca. 14%. Kommerzielle Split-Stirlingkühler erreichen bei 42 K einstufig Gütegrade von ca. 7%. Mit der vorgeschlagenen Konfiguration wird ein Konzept vorgestellt, das trotz technologisch offener Fragen das Gütegradniveau bekannter Kryokühler übertreffen kann. / Many applications of high temperature superconductivity are working advantageously within a temperature range between 30 K and 50 K. But for this temperature range only few suitable cryocooler with small refrigerating capacity (1-2 W) and good efficiency exist.Due to its properties Neon is an excellent refrigerant for this temperature level as an example with realised Joule-Thomson plant shows. A process analysis results in the presented cycle which is especially adapted to the properties of Neon. By combination of heat exchange and work extracting expansion and integration of a Joule-Thomson stage a high efficiency could be reached in spite of less efficient components.By arranging heat exchanger surfaces into a piston expansion machine a new concept is suggested to produce refrigeration in a large temperature range with a lot of expansion steps with reduced number of expanders. This unit is referred hereinafter to as heat exchanger-expander.The conical shaped working space results in an increase of the heat transfer coefficient and the heat transfer area.Several test machines were investigated. By means of testing the main loss sources and critical zones could be identified. The test results prove the opportunity of a near isothermal expansion and compression for the specified pressure ratio.Options to reduce the axial heat conduction are presented.Two simulation programs were utilised. Using the heat exchanger program the heat transfer is simulated in consideration of the axial heat conduction. Thereby the expansion work is considered as a stationary heat sink. The resulting stationary temperature pattern is the base for the expansion work calculation using the real gas properties in the expander program. Referring to the defined basic neon low temperature application the influence of different parameters on refrigerating capacity and efficiency was researched with the programs. The heat exchanger-expander is part of the described process with a Joule-Thomson stage. The refrigerating capacity shows a maximum depending as well from the mass flow as from the stroke. In result of the shuttle loss smaller strokes lead to better capacity due to heat transport with the piston.The inlet temperature of the low pressure flow influenced by the quality (NTU) of the Joule-Thomson heat exchanger has a large influence on the refrigerating capacity. With increasing inlet temperature the number of transfer units (NTU) for the fluid in the working volume increases and so the refrigerating capacity, too. The location of refrigerating capacity maximum and efficiency optimum is different. While decreasing mass flow efficiency is increasing to an optimum caused by the increased influence of axial heat conduction but limited by the minimum charge of the machine due to the dead space. The influence of the mass flow is dominating. As lower range values the inlet temperature of the low pressure flow and the stroke are influencing the optimal efficiency. The influence of axial heat conduction on refrigerating capacity and efficiency is shown using comparing calculations.For an inlet pressure of 200 bar, an outlet pressure of 60 bar, an inlet temperature of the low pressure flow of 80 K, a mass flow of 0,22 g/ s and a stroke of about 17 mm for the basic version of heat exchanger-expander a maximal effective refrigerating capacity of 1,3 We could be shown. The effective efficiency therefore is 14 %. Current commercial split Stirling cryocooler reach with single stage operation efficiencies of about 7 % at 42 K. The suggested configuration represents a concept that could be able to master the efficiency level of known cryocooler.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1114087213117-72544
Date01 March 2005
CreatorsFredrich, Ole
ContributorsTechnische Universität Dresden, Maschinenwesen, Maschinenbau, Institut für Energiemaschinen und Maschinenlabor, Prof. Dr. sc. techn. Hans Quack, Prof. Dr.-Ing. habil. Gotthard Will, Dr.-Ing. Armin Binneberg, Prof. Dr. sc. techn. Hans Quack
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0025 seconds