Return to search

Tailoring of Biomaterials using Ionic Interactions : Synthesis, Characterization and Application

<p>The interactions between polymers and components of biological systems are an important area of interest within the fields of tissue engineering, polymer chemistry, medicine and biomaterials. In order to create such a biomimetic material, it must show the inherent ability to reproduce or elicit a biological function. How do we design synthetic materials in order to direct their interactions with biological systems?</p><p>This thesis contributes to this research with aspects of how polymers interact with biological materials with the help of ionic interactions. Polyesters, biodegradable or not, may after a hydrolytic cleavage interact ionically with protonated amines by the liberated carboxylate functions. Amines are found in proteins and this fact will help us to anchor proteins to polyester surfaces. Another type of interaction is to culture cells in polymeric materials, i.e. scaffolds. We have been working on compliant substrates, knitted structures, to allow cell culture in three dimensions. A problem that arises here is how to get a high cell seeding efficiency? By working on the interactions between polymers, proteins and finally cells, it is possible to create a polarized protein membrane that allows for very efficient cell seeding, and subsequent three dimensional cell cultures. Finally a synthetic route to taylor interaction was developed. Here a group of polymers known as ionomers were synthesized. In our case ionic end groups have been placed onto biodegradable polycarbonates, we have created amphiphilic telechelic ionomers. Functionalization, anionic or cationic, changes the properties of the material in many ways due to aggregation and surface enrichment of ionic groups. It is possible to add functional groups for a variety of different interactions, for example introducing ionic groups that interact and bind to the complementary charge of proteins or on the other hand one can chose groups to prevent protein interactions, like the phosphorylcholine zwitterionomers. Such interactions can be utilized to modulate the release of proteins from these materials when used in protein delivery applications. The swelling properties, Tg, degradation rate and mechanical properties are among other things that will easily be altered with the choice of functional groups or backbone polymer.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-6924
Date January 2006
CreatorsAtthoff, Björn
PublisherUppsala University, Department of Materials Chemistry, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 193

Page generated in 0.0028 seconds