• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 1
  • Tagged with
  • 21
  • 21
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polysaccharide decoration of complexation hydrogel networks for oral protein delivery

Phillips, Margaret Ann 12 October 2011 (has links)
Polysaccharide-decorated complexation hydrogels were investigated for use as oral insulin delivery systems. Several different polysaccharide modifications of poly(methacrylic acid-grafted-ethylene glycol) hydrogels were developed using dextran and pullulan. Polymerizable groups were added to the polysaccharides, dextran and pullulan, by methacrylation. These macromers were then copolymerized with methacrylic and poly(ethylene glycol) to form P(MAA-g-EG-co-Dextran) and P(MAA-g-EG-co-Pullulan) gels using a UV-initiated free radical polymerization. The synthesis of these materials was confirmed using Fourier transform-infrared spectroscopy. The pH-responsive swelling of these systems was investigated using dynamic and equilibrium swelling measurements. Swelling of polysaccharide-modified hydrogels occurred with increasing pH. In acidic conditions, these materials were in a collapsed state while in neutral conditions these materials were swollen. The ability to load insulin into these hydrogels using was demonstrated with loading efficiencies as high as 88% were observed for P(MAA-g-EG-co-Dextran 6000) hydrogel microparticles. Almost zero release of insulin occurred in acidic conditions while an increase in pH was shown to trigger release. The use of dextran and pullulan-modified complexation hydrogels for oral delivery applications was investigated using in vitro cellular viability assays and mucoadhesion experiments. These systems were shown to cause little cytotoxicity to an intestinal epithelium Caco-2 cell model over a range of concentrations as high as 1 mg/ml. The adherence of polysaccharide-modified hydrogels to reconstitituted mucin gels was quantified with the P(MAA-g-EG-co-Dextran 6000) performing the best. Further evaluation of polysaccharide-modified complexation hydrogels for oral insulin delivery was evaluated through in vitro insulin drug transport studies using a mucus-producing Caco-2/HT29-MTX co-culture model. The results showed that the P(MAA-g-EG-co-Dextran 6000) allowed transport of insulin across the cell monolayers and did not adversely affect the integrity of the epithelial monolayer. / text
2

Intracellular Protein Delivery by Genetically Encoded and Structurally Constrained Cell-Penetrating Peptides

Chen, Kuangyu 27 August 2019 (has links)
No description available.
3

Intelligent Microcontainers : Fabrication, Characterization And Tunable Release Properties For Drug Delivery

Anandhakumar, S 07 1900 (has links) (PDF)
Polyelectrolyte capsules fabricated by layer-by-layer (LbL) technique are introduced as a simple and efficient carrier system for spontaneous deposition of proteins and low molecular water soluble drug. The objective of the work was to investigate the applicability of polyelectrolyte capsules as vehicles for sustained or controlled delivery of drugs. Two different polymeric systems composed of weak and strong polyelectrolytes were chosen to study the loading and release behavior in order to meet the requirements of biomedical applications. In the first system, the wall permeability of weak polyelectrolyte (PAH/PMA) capsules could be readily manipulated from open to closed state by simply varying the pH. The open and closed state of the capsules could be attributed to the charge density variation of weak polyelectrolytes, which induces the capsule wall to undergo a transition from continuous to nanoporous morphology due to phase segregation. Bovine Serum Albumin (BSA) was spontaneously deposited in the hollow capsules and deposition was investigated by CLSM, SEM and AFM techniques. The driving force for spontaneous deposition was electrostatic interaction between the preloaded polystyrene sulfonate (PSS) and BSA. The deposition was uniform and concentration of BSA in the capsule interior reached a few hundred times greater than that of bulk. The amount of loading was significantly influenced by the loading pH, loading concentration and charge density of substance to be loaded at the corresponding pH. The deposition was successful up to the isoelectric point of BSA (pH = 4.8) and there was no loading observed above that, since the deposition is based on electrostatic attraction between PSS and BSA. During the release at physiological pH of 7.4, charge reversal of BSA occurred which induced electrostatic repulsion between PSS and BSA thereby triggering the movement of BSA from the interior to the bulk. Release continued up to 5 h in water and a total release of 63 % was observed which increased to 72 % when release was performed in PBS. Spontaneous deposition of low molecular weight, water soluble drug, ciprofloxacin hydrochloride was performed in the same manner and its release profile was studied. Controlling diffusion of smaller drug molecules is extremely difficult in drug delivery applications. Cross linking of capsule wall components could be used to control the release rates of smaller drug molecules. Cross linking density is dependent on the cross linking time and increases the stiffness of the capsule wall. Release of ciprofloxacin hydrochloride was possible even up to 6 h after cross linking. Antibacterial studies showed that the drug released even after 25 h has a significant effect on the bacterial pathogen E.coli. The second system included weak and strong polyelectrolytes (PAH & DS) and a novel route was employed to fabricate optically addressable capsules that could be laser activated for delivery of drugs. This approach involved a combination of LbL assembly and polyol reduction method wherein PEG was used to reduce AgNO3 to Ag nanoparticles (NPs). The capsules were prepared via LbL assembly of PAH and DS on silica template followed by synthesis of silver NPs in the layers and subsequent dissolution of the silica core. The sulfonate groups of DS present in the polyelectrolyte film act as binding sites for the adsorption of silver ions which are then reduced to silver NPs in the presence of PEG. The size of the silver NPs formed was influenced by the AgNO3 concentration used. At lower concentration, smaller particles of uniform distribution were observed which turned into larger particles of random distribution when the concentration of AgNO3 is increased. Silver NPs embedded capsules ruptured when exposed to laser and was significantly influenced by silver NPs size, their distribution, laser intensity and time of exposure. The synthesis of silver NPs increased the permeability of the capsules to higher molecular weight substances like dextran caused by the defects, discontinuities and pores created on the polymeric network due to the newly formed silver NPs. Encapsulation of FITC-dextran was performed using thermal encapsulation method by exploiting temperature induced shrinking of the capsules at elevated temperatures. During heat treatment the porous morphology transformed into smooth pore free structure which prevented the movement of dextran into the bulk and hence enrichment inside the capsules. The loaded dextran was readily released when exposed to laser and the release could be controlled from linear to burst release in order to meet practical requirements in biomedical applications.
4

Physical enhancement of transdermal drug delivery: polysaccharide dissolving microneedles and micro thermal skin ablation

Lee, Jeong Woo 07 April 2009 (has links)
Transdermal drug delivery system has been limited to small and lipophilic drugs because skin has the intrinsic function to protect the body preventing entry of the external species into the body. In this thesis, two physical methods were studied to overcome the skin barrier in the controlled breakage of the skin barrier and to deliver macromolecules-based drugs through the skin; (1) polysaccharide dissolving microneedles and (2) micro thermal skin ablation. Polysaccharide dissolving microneedles system was designed to break the skin barrier in a minimized size with the mechanically poor material, to release them into skin with the dissolution of microneedles, and to deliver human growth hormone into the living hairless rats. Micro thermal skin ablation was designed to fabricate the device generating the energy impact with the basis of arc discharge, to transfer the energy impact on the skin, to remove stratum corneum selectively with three-dimensionally controlled manner, and to deliver hydrophilic macromolecules through skin.
5

Macromolecule Delivery into Mammalian Cells Using Supercharged Proteins

Cronican, James January 2012 (has links)
Delivery of macromolecules into mammalian cells in vitro and in vivo has enabled new areas of research and offers the potential for powerful new treatment options. Recent research has generated many delivery platforms but these solutions remain limited by scope, potency and safety. We have reported a superpositively charged green fluorescent protein (+36 GFP) with the ability to deliver nucleic acids into a variety of mammalian cell lines in vitro and to potently deliver protein in vitro and in vivo without toxicity. These results have directed us to identify a subset of naturally occurring human proteins with similar but previously unknown cell-penetrating and protein delivery properties. Preliminary efforts have been made towards establishing the therapeutic potential for supercharged proteins replacement of the cytosolic enzyme, argininosuccinate synthase. Preliminary efforts have also been made towards enhancing endosomal escape with \(His_{39} GFP\).
6

Vesicle-mediated and free soluble delivery of bacterial effector proteins by oral and systemic pathogens

Thay, Bernard January 2013 (has links)
Periodontitis, the primary cause of tooth-loss worldwide, is a bacterially induced chronic inflammatory disease of the periodontium. It is associated with systemic conditions such as cardiovascular disease (CVD). However, pathogenic mechanisms of periodontitis-associated bacteria that may contribute to the CVD association are unclear. The aim of this doctoral thesis project was to characterize bacterial mechanisms that can originate from the periodontal pocket and expose the host to multiple effector proteins, thereby potentially contributing to periodontal tissue degradation and systemic stimulation. As our main model, we have used Aggregatibacter actinomycetemcomitans, a Gram-negative species associated with aggressive forms of periodontitis, and with non-oral infections, such as endocarditis. Since Gram-positive species might be more common in periodontitis than previously believed, we have also investigated mechanisms of the multipotent bacterium, Staphylococcus aureus. Using an ex vivo insert model we showed that free-soluble surface material, released during growth by A. actinomycetemcomitans independently of outer membrane vesicles (OMVs), enhanced the expression of several proinflammatory cytokines in human whole blood. A clear LPS-independent effect suggested the involvement of effector proteins in this cytokine stimulation. This was supported by MALDI-TOF-MS and immunoblotting, which confirmed the release of GroEL and peptidoglycan-associated lipoprotein (PAL), in free-soluble form. We next demonstrated that A. actinomycetemcomitans OMVs could deliver multiple proteins including biologically active cytolethal distending toxin (CDT), a major virulence factor, into human gingival fibroblasts and HeLa cells. Using confocal microscopy, the active toxin unit, CdtB, was localized inside the nucleus of the intoxicated cells, whereas OmpA and proteins detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells had a perinuclear distribution. By using a fluorescent probe, B-R18, it was shown that the OMVs fused with lipid rafts in the plasma membrane. These findings suggest that OMVs can deliver biologically active virulence factors such as CDT into susceptible cells of the periodontium. Using A. actinomycetemcomitans vesicles labeled with the lipophilic dye, PKH26, it was shown that the OMVs can be internalized into the perinuclear region of human cells in a cholesterol-dependent manner. Co-localization analysis supported that the internalized OMVs carried A. actinomycetemcomitans antigens. Inhibition assays suggested that although OMV internalization appeared to have a major role in effector protein delivery, additional interactions such as vesicle membrane fusion may also contribute. The OMVs strongly induced activation of the cytosolic pathogen recognition receptors NOD1 and NOD2 in HEK293T-cells, consistent with a role in triggering innate immunity by carrying PAMPs such as peptidoglycan into host cells. Membrane vesicles (MVs) from S. aureus were found to carry biologically active alpha-toxin, a key virulence factor, which was delivered to host cells and required for full cytotoxicity of the vesicles. Confocal microscopy analysis revealed that these MVs, similar to A. actinomycetemcomitans OMVs, interacted with HeLa cells via membrane fusion. Thus, as S. aureus is frequently found in individuals with aggressive periodontitis, MV production could have potential to contribute to the severity of tissue destruction.
7

Gold Nanoparticles and Drug Delivery

Solfiell, David J 01 January 2014 (has links) (PDF)
Nanoparticles are important tools in biotechnology and biomedical research. Gold nanoparticles (AuNPs) have emerged as a particularly important class of nanobiotechnological tools as a result of a number of unique and useful attributes. These attributes include the high degree of biocompatibility of AuNP cores, the similarity in size of AuNPs and biomacromolecules, and the great chemical flexibility of AuNP surface design. One of the most promising applications of AuNPs in biotechnology and biomedicine is their use as drug delivery vehicles. Drug delivery vehicles provide therapeutics with desired delivery properties by targeting them specifically to the environments in which their therapeutic activity is sought and by overcoming solubility barriers. The drug delivery properties of AuNPs are a function of their sizes and surface chemistries. The nanometer scale of AuNPs allows these three-dimensional and diffusible self-assembled monolayers to act as substructures for supramolecular assemblies, to extravasate from tumor-supplying endothelia, and to undergo cellular uptake by endocytosis. AuNPs have become a versatile platform for the creation of multifunctional delivery vehicles. This work represents a collection of studies in which AuNPs have been used as probes in fundamental biological research and delivery systems for small molecules and biologics. In these studies, precision control of surface chemistry on the nanometer scale, made possible by AuNPs, has been used to find solutions to the problems of unraveling the role of hydrophobicity in immune system activation, delivering proteins past mammalian cell membranes, development of a sustained release drug delivery platform, and condensation and cellular delivery of siRNA.
8

Development of Methods for Protein Delivery and the Directed Evolution of Recombinases

Thompson, David Brandon 01 January 2015 (has links)
As a class, protein-based therapeutics offer tremendous advantages over traditional small molecule drugs. Due to their sizes and folding energies, proteins are ideal for catalyzing chemical reactions, and can bind tightly and selectively to extended target surfaces. However, due to their large size, virtually all proteins are unable to spontaneously enter cells, and as a result protein therapeutics are restricted to extracellular targets. We developed a platform for delivery of proteins to intracellular target sites by engineering the surface chemistry of a model protein, green fluorescent protein (GFP). We found that 'supercharged' cationic GFP variants (scGFPs) bind to anionic cell surface molecules and initiate endocytosis, resulting in the efficient delivery of translationally fused cargo to intracellular targets. We discovered that scGFPs, and cationic delivery reagents in general, alter endosomal trafficking in a manner proportional to both their charge and their delivery efficiency, suggesting that avoidance of endosomal maturation is a key step in the endosomal escape of delivered protein cargos. We also developed a method for encapsulation of recombinant proteins by cationic lipid delivery reagents using negatively supercharged GFP. Genetic modification technologies have matured rapidly following the discovery of protein classes with programmable DNA-binding specificities. While site-directed genetic knockout technologies are highly effective, targeted integration and repair remain comparatively inefficient. Site-specific recombinases directly catalyze strand exchange and ligation between DNA molecules, offering an approach to efficient genomic integration. However, most site-specific recombinases are not easily reprogrammable. To address this problem, we developed a genetic selection technique based on the Phage-Assisted Continuous Evolution (PACE) system, to enable the rapid evolution of recombinase proteins towards targets of interest. Using Cre recombinase as a model, the PACE system was optimized, validated, and used to evolve Cre variants with higher activity on their native loxP target site, as well as altered specificity towards a human genomic sequence within the hROSA26 locus. Finally, we developed a method for enhancing the specificity of RNA-guided nucleases by restricting activity to sites of obligate dimeric nuclease assembly. We engineered a FokI nuclease fusion to a catalytically inactivated Cas9 protein that mediates efficient modification with significantly reduced off-target activity.
9

Novel Protein Delivery Platforms to Modulate SDF-1α/CXCR4 Signaling in the Adult Cortex

January 2016 (has links)
abstract: Stromal cell-derived factor-1α (SDF-1α) and its key receptor, CXCR4 are ubiquitously expressed in systems across the body (e.g. liver, skin, lung, etc.). This signaling axis regulates a myriad of physiological processes that range from maintaining of organ homeostasis in adults to, chemotaxis of stem/progenitor and immune cell types after injury. Given its potential role as a therapeutic target for diverse applications, surprisingly little is known about how SDF-1α mediated signaling propagates through native tissues. This limitation ultimately constrains rational design of interventional biomaterials that aim to target the SDF-1α/CXCR4 signaling axis. One application of particular interest is traumatic brain injury (TBI) for which, there are currently no means of targeting the underlying biochemical pathology to improve prognosis. Growing evidence suggests a relationship between SDF-1α/CXCR4 signaling and endogenous neural progenitor/stem cells (NPSC)-mediated regeneration after neural injury. Long-term modulation of the SDF-1α/CXCR4 signaling axis is thus hypothesized as a possible avenue for harnessing and amplifying endogenous regenerative mechanisms after TBI. In order to understand how the SDF-1α/CXCR4 signaling can be modulated in vivo, we first developed and characterized a sustained protein delivery platform in vitro. We were the first, to our knowledge, to demonstrate that protein release profiles from poly(D,L,-lactic-co-glycolic) acid (PLGA) particles can be tuned independent of particle fabrication parameters via centrifugal fractioning. This process of physically separating the particles altered the average diameter of a particle population, which is in turn was correlated to critical release characteristics. Secondly, we demonstrated sustained release of SDF-1α from PLGA/fibrin composites (particles embedded in fibrin) with tunable burst release as a function of fibrin concentration. Finally, we contrasted the spatiotemporal localization of endogenous SDF-1α and CXCR4 expression in response to either bolus or sustained release of exogenous SDF-1α. Sustained release of exogenous SDF-1α induced spatially diffuse endogenous SDF-1/CXCR4 expression relative to bolus SDF-1 administration; however, the observed effects were transient in both cases, persisting only to a maximum of 3 days post injection. These studies will inform future systematic evaluations of strategies that exploit SDF-1α/CXCR4 signaling for diverse applications. / Dissertation/Thesis / Doctoral Dissertation Bioengineering 2016
10

Developments and Applications of Cyclic Cell Penetrating Peptides

Qian, Ziqing 10 October 2014 (has links)
No description available.

Page generated in 0.0862 seconds