Le Web des données étend le Web en publiant des données structurées et liées en RDF. Un jeu de données RDF est un graphe orienté où les ressources peuvent être des sommets étiquetées dans des langues naturelles. Un des principaux défis est de découvrir les liens entre jeux de données RDF. Étant donnés deux jeux de données, cela consiste à trouver les ressources équivalentes et les lier avec des liens owl:sameAs. Ce problème est particulièrement difficile lorsque les ressources sont décrites dans différentes langues naturelles.Cette thèse étudie l'efficacité des ressources linguistiques pour le liage des données exprimées dans différentes langues. Chaque ressource RDF est représentée comme un document virtuel contenant les informations textuelles des sommets voisins. Les étiquettes des sommets voisins constituent le contexte d'une ressource. Une fois que les documents sont créés, ils sont projetés dans un même espace afin d'être comparés. Ceci peut être réalisé à l'aide de la traduction automatique ou de ressources lexicales multilingues. Une fois que les documents sont dans le même espace, des mesures de similarité sont appliquées afin de trouver les ressources identiques. La similarité entre les documents est prise pour la similarité entre les ressources RDF.Nous évaluons expérimentalement différentes méthodes pour lier les données RDF. En particulier, deux stratégies sont explorées: l'application de la traduction automatique et l'usage des banques de données terminologiques et lexicales multilingues. Dans l'ensemble, l'évaluation montre l'efficacité de ce type d'approches. Les méthodes ont été évaluées sur les ressources en anglais, chinois, français, et allemand. Les meilleurs résultats (F-mesure > 0.90) ont été obtenus par la traduction automatique. L'évaluation montre que la méthode basée sur la similarité peut être appliquée avec succès sur les ressources RDF indépendamment de leur type (entités nommées ou concepts de dictionnaires). / The Semantic Web extends the Web by publishing structured and interlinked data using RDF.An RDF data set is a graph where resources are nodes labelled in natural languages. One of the key challenges of linked data is to be able to discover links across RDF data sets. Given two data sets, equivalent resources should be identified and linked by owl:sameAs links. This problem is particularly difficult when resources are described in different natural languages.This thesis investigates the effectiveness of linguistic resources for interlinking RDF data sets. For this purpose, we introduce a general framework in which each RDF resource is represented as a virtual document containing text information of neighboring nodes. The context of a resource are the labels of the neighboring nodes. Once virtual documents are created, they are projected in the same space in order to be compared. This can be achieved by using machine translation or multilingual lexical resources. Once documents are in the same space, similarity measures to find identical resources are applied. Similarity between elements of this space is taken for similarity between RDF resources.We performed evaluation of cross-lingual techniques within the proposed framework. We experimentally evaluate different methods for linking RDF data. In particular, two strategies are explored: applying machine translation or using references to multilingual resources. Overall, evaluation shows the effectiveness of cross-lingual string-based approaches for linking RDF resources expressed in different languages. The methods have been evaluated on resources in English, Chinese, French and German. The best performance (over 0.90 F-measure) was obtained by the machine translation approach. This shows that the similarity-based method can be successfully applied on RDF resources independently of their type (named entities or thesauri concepts). The best experimental results involving just a pair of languages demonstrated the usefulness of such techniques for interlinking RDF resources cross-lingually.
Identifer | oai:union.ndltd.org:theses.fr/2016GREAM011 |
Date | 04 May 2016 |
Creators | Lesnikova, Tatiana |
Contributors | Grenoble Alpes, Euzenat, Jérôme, David, Jérôme |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds