La tomographie par rayons X est une technique d’imagerie non-invasive qui permet de réaliser des images en 3D par l’acquisition de multiples images en 2D. La tomographie X par contraste de phase (XPCT) a été utilisée pour étudier la biodistribution de nanoparticules métalliques (NPs) dans des souris. Ces NPs sont très utilisées comme radiosensibilisants dans la recherche de traitements contre les cancers mais aussi pour marquer des plaques amyloïdes de la maladie d’Alzheimer chez la souris. Grace à la grande brillance du synchrotron ESRF, des images XPCT en haute résolution ont été obtenues et traitées pour produire des modèles en 3D d’organes de souris dopés aux NPs de gadolinium, d’or ou de platine.En parallèle, dans le cadre du projet Européen VOXEL (Volumetric X-ray Extremely Low dose), un microscope compact à rayons X mous a été développé pour l’imagerie cellulaire. Ce microscope fonctionne dans la « fenêtre de l’eau », une région spectrale pour laquelle un bon contraste de la structure cellulaire est réalisable naturellement. Ce microscope est conçu pour réaliser de l’imagerie plénoptique, une technique actuellement testée uniquement dans le visible. Ce système est composé d’une lentille principale et d’une matrice de micro-lentilles couplée à un détecteur, permettant d’enregistrer les composantes angulaires et spatiales des rayons arrivant au niveau du détecteur. Il est ainsi possible de produire des images en 3D à partir d’une seule exposition. Adapter cette technique disruptive aux rayons X aura, un très grand impact pour les applications biomédicales car cela permettra de réduire fortement la dose absorbée par les échantillons par rapport à la méthode conventionnelle de tomographie X. / X-ray tomography is a non-invasive imaging technique that allows producing 3D images following the acquisition of multiple 2D images at many angles. In particular, X-ray Phase-Contrast Tomography (XPCT) has been exploited for resolving the biodistribution of metal-based theranostic nanoparticles (NPs) in mice. These NPs are widely used as radiosensitizers for researches on cancer therapies and, recently to mark amyloid plaques in Alzheimer’s disease in mice. Thanks to the high brightness of ESRF synchrotron, high resolution XPCT images were obtained and thus processed for producing 3D models of mice organs doped with gadolinium, gold or platinum NPs.In parallel, in the framework of a European project, named VOXEL (Volumetric X-ray Extremely Low dose), a compact desktop-size soft X-ray microscope was developed aiming at biological cell imaging. The microscope was designed to be suitable in the so-called “water window” spectral range, where a natural good contrast of the cellular structures is achievable. The microscope was conceived to perform plenoptic imaging, a technology currently tested only in the visible domain. This device is composed of a main lens and a microlens array coupled to a detector, allowing recording the spatial and the angular components of the light rays travelling up to the detector and thus enabling producing 3D images in a single exposure. By adapting this disrupting technology to X-rays, a huge impact for bio-medical applications is foreseen, since it would lead to a drastic decrease of the dose absorbed by samples, compared to traditional X-ray tomography methods.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLX104 |
Date | 20 December 2018 |
Creators | Longo, Elena |
Contributors | Université Paris-Saclay (ComUE), Zeitoun, Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds