Return to search

Assessing the Reactive Surface Area of Phlogopite during Acid Dissolution: An Atomic Force Microscopy, X-ray Photoelectron Spectroscopy, and Low Energy Electron Diffraction Study

The behavior during dissolution of edge and basal surfaces of the mica phlogopite were examined using in situ atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED) in an attempt to characterize the reactive surface area during dissolution. Mica minerals are the ideal material for this study because they offer a high degree of structural anisotropy. Therefore surfaces with different structures are easily identified. Dissolution is shown to proceed preferentially by removal of material from {hk0} edges. Dissolution rates were calculated by measuring the volume of material removed from etch pits, and normalizing to either the "reactive" surface area of {hk0} edges exposed at pit walls, or to a total "BET-equivalent" surface area. Rates normalized to total surface area are in the range of dissolution rates reported in the literature. Edge surface normalized rates are about 100 times faster. Long-term in situ AFM observations of phlogopite dissolution reveal that exposed (001) surfaces also display a distinct reactivity, though it operates on a different time scale. The top layer is shown to expand between 39 and 63 hours in contact with pH 2 HCl solution. Subsequent LEED analysis shows that the (001) surface becomes amorphous upon reacting with pH 2 HCl. Compositional characterization of the phlogopite after reaction shows that for pitted phlogopite surfaces, dissolution is characterized by leaching of octahedral cations and polymerization of the silica-enriched residual layer. No chemical changes or polymerization are observed for freshly cleaved unpitted phlogopite after reaction with pH 2 HCl for 24 hours. This suggests a gallery access mechanism is facilitated by edge attack, and is only significant on exposed (001) surfaces after a certain amount of dissolution by edge attack. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/31837
Date11 May 2001
CreatorsRufe, Eric
ContributorsGeological Sciences, Hochella, Michael F. Jr., Rimstidt, J. Donald, Bodnar, Robert J.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationRUFEpdf.pdf

Page generated in 0.0024 seconds