Return to search

Hydrogen incorporation in Zintl phases and transition metal oxides- new environments for the lightest element in solid state chemistry

This PhD thesis presents investigations of hydrogen incorporation in Zintl phases and transition metal oxides. Hydrogenous Zintl phases can serve as important model systems for fundamental studies of hydrogen-metal interactions, while at the same time hydrogen-induced chemical structure and physical property changes provide exciting prospects for materials science. Hydrogen incorporation in transition metal oxides leads to oxyhydride systems in which O and H together form an anionic substructure. The H species in transition metal oxides may be highly mobile, making these materials interesting precursors toward other mixed anion systems.  Zintl phases consist of an active metal, M (alkali, alkaline earth or rare earth) and a more electronegative p-block metal or semimetal component, E (Al, Ga, Si, Ge, etc.). When Zintl phases react with hydrogen, they can either form polyanionic hydrides or interstitial hydrides, undergo full hydrogenations to complex hydrides, or oxidative decomposition to more E-rich Zintl phases. The Zintl phases investigated here comprised the CaSi2, Eu3Si4, ASi (A= K, Rb) and GdGa systems which were hydrogenated at various temperature, H2 pressure, and dwelling time conditions. For CaSi2, a regular phase transition from the conventional 6R to the rare 3R took place and no hydride formation was observed. In contrast, GdGa and Eu3Si4 were very susceptible to hydrogen uptake. Already at temperatures below 100 ºC the formation of hydrides GdGaH2-x and Eu3Si4H2+x was observed. The magnetic properties of the hydrides (antiferromagnetic) differ radically from that of the Zintl phase precursor (ferromagnetic). Upon hydrogenating ASi at temperatures around 100 oC, silanides ASiH3 formed which contain discrete complex ion units SiH3-. The much complicated β – α order-disorder phase transition in ASiH3 was evaluated with neutron powder diffraction (NPD), 2H NMR and heat capacity measurements.  A systematic study of the hydride reduction of BaTiO3 leading to perovskite oxyhydrides BaTiO3-xHx was done. A broad range of reducing agents including NaH, MgH2, CaH2, LiAlH4 and NaBH4 was employed and temperature and dwelling conditions for hydride reduction examined. Samples were characterized by X-ray powder diffraction (XRPD), thermal gravimetric analysis and 1H NMR. The concentration of H that can be incorporated in BaTiO3-xHx was found to be very low, which is in contrast with earlier reports. Instead hydride reduction leads to a high concentration of O vacancies in the reduced BaTiO3. The highly O-deficient, disordered, phases - BaTiO3-xHy□(x-y) with x up to 0.6 and y in a range 0.05 – 0.2 and (x-y) &gt; y – are cubic and may represent interesting materials with respect to electron and ion transport as well as catalysis. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 5: Manuscript.</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-141588
Date January 2017
CreatorsNedum Kandathil, Reji
PublisherStockholms universitet, Institutionen för material- och miljökemi (MMK), Stockholm : Department of Materials and Environmental Chemistry (MMK), Stockholm University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds