The adsorption isotherms can be used to study the properties of a sorbent and to determine the binding energy between a sorbent and a gas that is adsorbed on it. This study that was carried out on a metal organic framework called "Zeolitic imidazolate framework-8" (ZIF-8) as the sorbent. ZIF -8 is known to have a flexible structure and it has shown structural transformation during gas adsorption, at different temperatures. During this study, ZIF-8 was explored using Xenon adsorption. The range of temperatures for the Xenon adsorption isotherms was between 138 K and 157.56 K. During the adsorption of Xenon on ZIF -8 the lowest two isotherms (138 K and 140.39 K) showed two steps. The lower pressure step represents adsorption of Xenon on the "as - produced" ZIF-8. The extra step reflects the structural transition ("gate opening") that occurs due to the re-orientation of the organic linkers in ZIF-8. These changes increase the diameter of the apertures in the structure, and allow more gas molecules to enter in to the ZIF -8 structure. The Xenon adsorption isotherms were also used to determine the effective surface area of ZIF -8 by employing the "point B" method. The binding energy between Xenon and ZIF -8 was found using the isosteric heat for Xenon on ZIF-8 at low coverage. The kinetics of the Xenon adsorption was also studied during this experiment.
Identifer | oai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-2595 |
Date | 01 December 2014 |
Creators | Gallaba, G.M. Dinuka Harshana |
Publisher | OpenSIUC |
Source Sets | Southern Illinois University Carbondale |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses |
Page generated in 0.003 seconds