Aufkonvertierende (upconverting; UC) Nanomaterialien bilden eine neue Klasse nichtlinearer lumineszenter Reporter, die nah-infrarotes (NIR) Anregungslicht in Photonen von höherer Energie umwandeln. Das effizienteste bekannte UC-System bildet hierbei β-NaYF4: 20%Yb(III), 2%Er(III) mikrokristallines Bulkmaterial, für welches UC-Quantenausbeuten (ΦUC) von 10 % berichtet werden, während ΦUC von Nanokristallen (nanocrystals; NC) um mehrere Größenordnungen niedriger sein können. Um die Effizienz von UC-Nanomaterialien zu erhöhen, werden NC üblicherweise mit inerten Schalen versehen. In dieser Arbeit werden mehrere verschiedene Bulkmaterialien spektroskopisch untersucht, um ein Vergleichsmaterial auszuwählen, das als Maßstab für alle folgenden, vergleichbaren Messungen an NC dient. Die Oberfläche von ultrakleinen (3.7±0.5) nm NC wird mit Schalen von bis zu 10 nm Dicke versehen, um die optimale Schalendicke für vollständige Oberflächenpassivierung zu identifizieren, allerdings weisen die Ergebnisse auf eine mögliche Kern-Schale-Durchmischung hin. In einer zweiten Studie werden die unterschiedlichen Dotanden, Er(III) und Yb(III), auf ihre optischen Eigenschaften sowie die Einflüsse von Energietransfer (ET) und von ihrer Umgebung spektroskopisch untersucht. Dabei kann klar zwischen Oberflächeneffekten und oberflächenunabhängigen Volumeneffekten unterschieden werden. Die Ergebnisse werden durch ein einfaches Monte-Carlo-Modell gestützt, durch das die größen- und leistungsdichte-(P-)abhängigen Populierungsdynamiken der strahlenden Banden von Er(III) vorhergesagt werden können. Zuletzt werden durch eine verbesserte Synthesemethode UCNC mit stark verbesserten Lumineszenzeigenschaften hergestellt, mit denen bei vergleichsweise niedrigen P die gleichen ΦUC wie beim Bulkmaterial erreicht werden. Dies liefert einen Einblick in vielfältige Anwendungsmöglichkeiten für UCNC. / Upconversion (UC) nanomaterials are an emerging new class of non-linear luminescent reporters which convert near-infrared (NIR) excitation light into higher-energy photons. The most efficient known UC material is the β-NaYF4: 20%Yb(III), 2%Er(III) bulk (microcrystalline) phosphor with reported UC quantum yields (ΦUC) of 10 %, while ΦUC of nanocrystals (NC) can be several orders of magnitude lower. Strategies to improve the efficiency of UC nanomaterials include surface passivation with inert shells. In this work, several different bulk materials are compared to select one benchmark material for
comparisons with NC analyzed with the same measurement techniques. The surface of ultrasmall (3.7 ± 0.5) nm NC is coated with inert shells of up to 10 nm thickness to identify an optimal shell thickness for complete surface passivation, but the results suggest core-shell intermixing. To distinguish between the different dopant ions, Er(III) and Yb(III), and the effect of energy transfer (ET) in a second study, single- and co-doped UCNC are investigated spectroscopically and the influence of their environment is determined thoroughly. Herein, a clear distinction between surface-related and surface-independent, volume-related effects is achieved and the results are emphasized by the use of a simple random walk model which accurately predicts size- and power density (P)-dependent population dynamics of the emissive bands of Er(III). Finally, utilizing an improved synthesis technique, UCNC with enhanced luminescence properties are produced, reaching the same ΦUC as the benchmarked bulk material at reasonably low P, providing an insight into numerous possible
applications of UCNC.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/25354 |
Date | 23 May 2022 |
Creators | Grauel, Bettina |
Contributors | Benson, Oliver, Resch-Genger, Ute, Kumke, Michael |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0031 seconds