Röntgencomputertomographie (CT) hat in ihrer industriellen Anwendung ein sehr breites Spektrum möglicher Prüfobjekte. Ziel einer CT-Messung sind dreidimensionale Abbilder der Verteilung des Schwächungskoeffizienten der Objekte mit möglichst großer Genauigkeit. Die Parametrierung eines CT-Systems für ein optimales Messergebnis hängt stark vom zu untersuchenden Objekt ab. Eine Vorhersage der optimalen Parameter muss die physikalischen Wechselwirkungen mit Röntgenstrahlung des Objektes und des CT-Systems berücksichtigen. Die vorliegende Arbeit befasst sich damit, diese Wechselwirkungen zu modellieren und mit der Möglichkeit den Prozess zur Parametrierung anhand von Gütemaßen zu automatisieren. Ziel ist eine simulationsgetriebene, automatische Parameteroptimierungsmethode, welche die Objektabhängigkeit berücksichtigt. Hinsichtlich der Genauigkeit und der Effizienz wird die bestehende Röntgensimulationsmethodik erweitert. Es wird ein Ansatz verfolgt, der es ermöglicht, die Simulation eines CT-Systems auf reale Systeme zu kalibrieren. Darüber hinaus wird ein Modell vorgestellt, welches zur Berechnung der zweiten Ordnung der Streustrahlung im Objekt dient. Wegen des analytischen Ansatzes kann dabei auf eine Monte-Carlo Methode verzichtet werden. Es gibt in der Literatur bisher keine eindeutige Definition für die Güte eines CT-Messergebnisses. Eine solche Definition wird, basierend auf der Informationstheorie von Shannon, entwickelt. Die Verbesserungen der Simulationsmethodik sowie die Anwendung des Gütemaßes zur simulationsgetriebenen Parameteroptimierung werden in Beispielen erfolgreich angewendet beziehungsweise mittels Referenzmethoden validiert. / Industrial X-ray computed tomography (CT) can be applied to a large variety of different specimens. The result of a CT measurement is a three-dimensional image containing the position-dependent attenuation coefficient of the specimen. For an optimal imaging CT-measurement parameters depend on both the properties of the CT-System and the specimen. To predict such an optimal parameterization both the physical interactions with X-rays of the CT-System and the specimen, must be taken into account. This thesis sets out to address the modelling of the interactions as well as the automatization of the parameter finding. The latter is based on a figure of merit for CT-measurements.
Aim is a simulation-based, automatic parameter optimization method which includes the object-dependency on distinct specimens. The currently existing X-ray simulation methods are enhanced with respect to accuracy and efficiency. Therefore a method for the calibration of the simulation to a real CT-system is presented. Additionally, a model for second order X-ray scattering is developed in order to calculate the specimen-scattered radiation. This is done using an analytical ansatz and no Monte-Carlo method has to be applied. So far, no universal definition of a figure of merit for CT-results has been given in literature. Using Shannon's information theory such a definition is developed. The improvements of the simulation method and the application of the figure of merit for simulation-based parameter optimization are used in examples or are validated using reference methods.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:16923 |
Date | January 2018 |
Creators | Schielein, Richard |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds