Return to search

Electrical and optical properties of hydrogen-related complexes and their interplay in ZnO / Elektrische und optische Eigenschaften von Wasserstoff-korrelierten Komplexen und ihre Wechselwirkung in ZnO

The commercial breakthrough of ZnO-based devices is hampered mainly by the unipolar n-type conductivity of this material. Hydrogen, which is known to form both electrically active and inactive complexes in ZnO, is considered as a main cause of this behavior. However, the existing literature is incomplete and partly contradictory. The object of the present thesis is a comprehensive investigation of the properties of two hydrogen-induced shallow donors HBC and HO, the hydrogen molecule H2, and a hydrogen-related defect, which gives rise to local vibrational modes (LVMs) at 3303 and 3320 cm-1, in ZnO and their interaction. The defects are characterized by Raman spectroscopy, infrared absorption spectroscopy, photoconductivtity (PC) and photoluminescence measurements.

Based on the PC technique, a novel and highly sensitive spectroscopic approach is established, which is applicable for probing LVMs in strongly absorbing spectral regions. This technique enables the detection of the local modes of HO at 742 and 792 cm-1 in the neutral charge state. In consequence, earlier theoretical predictions regarding the microscopic structure of this shallow donor can be verified. In Raman measurements the electronic 1s→2s transition of HO is identified at 273 cm-1. This quantity is found to blue-shift with the HO defect concentration. A similar blue-shift of the 1s→2s(2p) donor transition of HBC is assigned to local lattice strain which was generated during high temperature processes.

A Raman study of the H2 molecule covers its formation, stability, lattice position and interplay with the ZnO host. In particular, the role of H2 for the continuous generation of HO and HBC and the related n-type behavior is elaborated. The analysis unambiguously confirms that the so-called “hidden hydrogen” species is indeed H2. Moreover, the observation of the ortho-para-conversion process and the coupling to the host phonons contribute to a general understanding of H2 in semiconductors.

Experimental results of the LVMs of 3303 and 3320 cm-1 in conjunction with model calculations yield an underlying defect containing three hydrogen atoms. This complex Y–H3 exhibits two configurations, which differ only in the orientation of one chemical bond. The findings are consistent equally with a zinc vacancy decorated with three hydrogen atoms and an ammonia molecule, respectively. Earlier models proposed in the literature are discarded.

Measurements of concentration profiles by using Raman spectroscopy reveal the local distribution of the hydrogen-related defects as well as lattice imperfections. At the surface, where oxygen vacancies are present, HO is identified as the dominant shallow donor. Below, in parts of the crystal with low damage, HBC is the prevalent defect. In the sample center, characterized by a significant amount of zinc vacancies, the concentrations of H2 and Y–H3 show their maxima. By recording concentration profiles after thermal treatments a spatially resolved investigation of the interplay of these hydrogen-related defects is possible. / Der kommerzielle Durchbruch von ZnO-basierten Bauelementen ist hauptsächlich durch die beständige n-Typ Leitung des Materials eingeschränkt. Wasserstoff, der sowohl elektrisch aktive als auch inaktive Komplexe in ZnO formt, gilt als ein Hauptverursacher dieses Verhaltens. Jedoch ist die bestehende Literatur zu derartigen Defekten unvollständig, teils auch widersprüchlich. Gegenstand der vorliegenden Arbeit sind umfassende Untersuchungen der beiden wasserstoffinduzierten Donatoren HBC und HO, des Wasserstoffmoleküls H2 und eines Wasserstoffdefekts mit lokalen Schwingungsmoden (LSMn) bei 3303 und 3320 cm-1 in ZnO hinsichtlich ihrer Eigenschaften und gegenseitigen Wechselwirkung. Die Charakterisierung der Komplexe erfolgt mit Hilfe von Raman-Spektroskopie, Infrarot-Absorptionsspektroskopie, Photoleitfähigkeits- (PC) und Photolumineszenzmessungen.

Basierend auf der PC Technik wird eine neuartige, hochsensitive Spektroskopiemethode etabliert, welche auch in stark absorbierenden Spektralbereichen anwendbar ist. Diese Technik ermöglicht erstmals die Detektion der LSMn von HO bei 742 und 792 cm-1 im neutralen Ladungszustand. Das experimentelle Ergebnis verifiziert theoretische Vorhersagen zur mikroskopischen Struktur dieses flachen Donators. In Raman-Messungen wird der elektrische 1s→2s Übergang von HO bei 273 cm-1 identifiziert und eine Blauverschiebung dieser Größe mit zunehmender HO-Konzentration beobachtet. Der Donator HBC zeigt ebenfalls eine Blauverschiebung des elektrischen 1s→2s(2p) Übergangs, welche durch lokale Gitterverzerrungen nach Hochtemperaturbehandlungen bedingt ist.

Eine Raman-Studie charakterisiert das H2-Molekül in Bezug auf seine Bildung, Stabilität, Gitterposition und die Wechselwirkung mit dem ZnO-Kristall. Insbesondere wird seine Rolle für die fortwährende Bildung der Donatoren HO und HBC und des damit verbundenen n-Typ Verhaltens herausgearbeitet. Die Analyse ergibt die eindeutige Identifizierung der in der Literatur mit „hidden hydrogen“ bezeichneten Spezies als H2. Darüber hinaus tragen die beobachteten Umwandlungsprozesse zwischen ortho-H2 und para-H2 sowie die Kopplung an das Phononenspektrum zu einem generellen Verständnis von Wasserstoffmolekülen in Halbleitern bei.

Die experimentellen Ergebnisse der LSMn bei 3303 und 3320 cm-1 in Kombination mit Modellrechnungen ergeben einen zugrundeliegenden Defekt mit drei Wasserstoffatomen. Dieser Komplex Y–H3 weist zwei Konfigurationen auf, welche sich durch die Orientierung von nur einer chemischen Bindung unterscheiden. Die Beobachtungen sind mit einer Zinkvakanz besetzt mit drei Wasserstoffatomen bzw. einem Ammoniakmolekül als mikroskopische Struktur gleichermaßen erklärbar. Bisherige Modelle aus der Literatur können damit widerlegt werden.

Messungen von Konzentrationsprofilen mit Raman-Spektroskopie offenbaren die lokale Verteilung der Wasserstoffdefekte sowie von Gitterstörungen. An der Oberfläche, im Beisein von Sauerstoffvakanzen, ist HO der dominante flache Donator. In dem sich anschließenden ungestörten Kristallverbund ist hingegen der Donator HBC vorherrschend. In Zentrum, welches von Zinkvakanzen geprägt ist, sind die Konzentrationen von H2 und Y–H3 maximal. In Verbindung mit Temperaturbehandlungen ist eine räumlich aufgelöste Untersuchung der Wechselwirkung möglich.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-187905
Date16 November 2015
CreatorsKoch, Sandro
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Dr. Eduard Lavrov, Prof. Dr. Jörg Weber, Prof. Dr. Michael Stavola
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.003 seconds