財務報表記錄可說是企業經營績效良窳的反映指標,而其中所衍生出來的財務比率,向 來均是管理者、投資者進行企業診斷或未來經營績效預測的重要資訊來源。然而,相關 的研究發現,由於產業間經濟環境與市場結構特性的不同,所呈現出來的財務報表資訊 內涵亦將有所差別。因此,若進一步運用個別產業之報表資訊預測公司未來盈餘時,將 能夠提供產業間結果進行分析與比較的基礎。 如何自報表中獲取與公司經營績效相關之會計資訊,進而建構出優良的盈餘預測模式, 是近幾年來學者感興趣的研究課題之一。鑑於人工智慧之類神經網路系統擁有多項的特點,因此,對於盈餘預測會計資訊萃取的應用上,無非是提供了我們一個新的選擇途徑。 本研究即根據此項概念,以民國70年第一季至民國82年第三季為止共十五項大小產業之 股票上市公司財務報表以及股價報酬等資料作為研究樣本,進行盈餘預測模式的建構以 及投資超額報酬的計算。 進一步地說,本研究的內容可以分成三個部份,第一部份是以整體市場樣本為例,對類 神經網路主要參數如輸入變數組合、隱藏層節點數等進行調整及測試,以從中選取出盈 餘預測效果較佳之模式設定;在第二部份則是運用此一盈餘預測模式,分別對整體市場 以及紡織、電子電機
兩項產業樣本進行網路的訓練與測試,並根據模式所獲得之區別及 預測能力評估指標,探討不同產業特性樣本所建構的模式之間,其預測結果上的差異性 ;而第三部份則是利用各類產業模式預測結果的資訊,從利潤與風險兩種角度,定義"總 體"、"高利潤"、"低風險"、 "高利潤低風險"等四種不同類型投資策略,並以事件研究 法計算各項策略所能獲取之累積超額報酬,最後,則根據各策略之獲利績效,進行產業 間的分析比較,以找出本研究各類特定產業之最適投資策略。 本研究根據前述方式所進行的實驗研究中,獲得了以下三點結論: 一、類神經網路盈餘預測模式之建構 (一)以整體市場樣本為對象所進行之網路的測試中,發現模式整體區別能力大致介於五 到七成之間;而整體預測能力則介於四到六成之間。 (二)本研究所找出盈餘預測效果較佳之網路模式設定如下:1.輸入變數組合:單因子多變量變異數分析之22項顯著性財務比率 2.網路架構(輸入層-隱藏層-輸出層):22-22-1 3.連結權數初始值設定範圍:-0.1~0.1 二、產業盈餘預測結果之分析 (一)整體而言,產業間模式測試結果的差異並不大,其中以紡織產業的模式區別及預測 能力最好(70%以上),電子電機產業次之,而整體市場模式的結果均不及兩項單一性產業。 (二)模式預測能力穩定性方面,各產業於五個年度間預測率的波動大致還算穩定,其中 就紡織產業而言,其年度之間模式預測能力的差別不大,但電子電機產業年度間的變化 則要比前者來得明顯。 三、產業投資策略績效之分析 (一)各類型投資策略的整體結果中,紡織與電子電機兩項產業的獲利績效相當,且均要 比整體市場來得好,其中,紡織產業之"高利潤低風險"策略所獲得的累積超額報酬(43.28%) 更居全體之冠。 (二)本研究所找出之個別產業最適投資策略分別為: 1.整體市場:總體策略、低風險策略 2.紡織產業:高利潤低風險策略、高利潤策略 3.電子電機產業:高利潤低風險策略、低風險策略 / Financial Statements are very important information
indicating performance of corporations. Managers and investors
use financial ratios as vital indexes to evaluate and predict
operating results of corporations, and make their decisions.
ategy, and compute CAR for each investment strategies. At last,
I analyze the investing results of the four strategies for
individual industry. ANN ( Artificial Nerual Network) shoot a
new direction on researching application of abstracting
accounting information which can efficiently predict earnings.
According to results of relative researches, financial
statements from different industries present and implicate
different accounting information. If we further apply ANN on
financial statement information to predict earnings of
corporations, we can use the results as bases of analyses and
comparisons among industries. Because ANN model has many
advantages, in this research, I use financial statements and
return on stocks from corporations as researching samples to
construct prediction models and compute CAR(Cumulative Abcdrmal Return) on investments. These samples are chosen from 15 different industries and covered from the first quarter of 1981 to the third quarter of 1993. This research consists of three parts: 22 financial ratios selected by MANOVA First, I use the general market samples to adjust and predict the vital parameters of ANN models, such as the selection of input variable, the number of hidden node, and finally pick better setups for the prediction model. Second, I use this model to train and test samples from the general market, the textile, and the electron industry, and research the variation of predicting results by different models made up different industries by means of evaluation indexes . Third, I use the results predicted by the three different industry models, inspect of risk and return, to define four types of investment strategies -- "the general", "the high return", "the low risk", and "the high return - low risk" strategy, and compute CAR for each investment strategies. At last, I analyze the investing results of the four strategies for individual industry. After researching, I find:s of the textile and electron industry are better than the general markets'. 1.The better setups of ANN
predition models are :industries are: (1)the selection of input variable:the 22 financial ratios selected by MANOVA (2)the ANN model topology(input node - hidden node - output node):22-22-1 rategy (3)the range of initial connection weights:-0.1~0.1 return - low risk strategy 2.The analyses of results predicted by the three different industry models are: (1)the predicting abilities of the textile and electron industry are better than the general markets'. 3.The proper investment strategies of individual industries are: (1)the general market:the general and the low risk strategy (2)the textile industry:the high return and the high return - low risk strategy (3)the electron
industry:the low risk and the high return - low risk strategy
Identifer | oai:union.ndltd.org:CHENGCHI/B2002002868 |
Creators | 胡國瑜, Hu, Kuo-yie |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.7797 seconds