Return to search

Métodos neuronais para a solução da equação algébrica de Riccati e o LQR / Neural methods for the solution of Equation Of algebraic Riccati and LQR

Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-08-14T18:28:45Z
No. of bitstreams: 1
FabioSilva.pdf: 1098466 bytes, checksum: a72dcced91748fe6c54f3cab86c19849 (MD5) / Made available in DSpace on 2017-08-14T18:28:45Z (GMT). No. of bitstreams: 1
FabioSilva.pdf: 1098466 bytes, checksum: a72dcced91748fe6c54f3cab86c19849 (MD5)
Previous issue date: 2008-06-20 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) / Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) / We present in this work the results about two neural networks methods to solve the algebraic Riccati(ARE), what are used in many applications, mainly in the Linear Quadratic Regulator (LQR), H2 and H1 controls. First is showed the real symmetric form of the ARE and two methods based on neural computation. One feedforward neural network (FNN), that de¯nes an error as function of the ARE and a recurrent neural network (RNN), which converts a constrain optimization problem, restricted to the state space model, into an unconstrained convex optimization problem de¯ning an energy as function of the ARE and Cholesky factor. A proposal to chose the learning parameters of the RNN used to solve the ARE, by making a surface of the parameters variations, thus we can tune the neural network for a better performance. Computational experiments related with the plant matrices perturbations of the tested systems in order to perform an analysis of the behavior of the presented methodologies, that are based on homotopies methods, where we chose a good initial condition and compare the results to the Schur method. Two 6th order systems were used, a Doubly Fed Induction Generator(DFIG) and an aircraft plant. The results showed the RNN a good alternative compared with the FNN and Schur methods. / Apresenta-se nesta dissertação os resultados a respeito de dois métodos neuronais para a resolução da equação algébrica de Riccati(EAR), que tem varias aplicações, sendo principalmente usada pelos Regulador Linear Quadrático(LQR), controle H2 e controle H1. É apresentado a EAR real e simétrica e dois métodos baseados em uma rede neuronal direta (RND) que tem a função de erro associada a EAR e uma rede neuronal recorrente (RNR) que converte um problema de otimização restrita ao modelo de espaço de estados em outro de otimização convexa em função da EAR e do fator de Cholesky de modo a usufruir das propriedades de convexidade e condições de otimalidade. Uma proposta para a escolha dos parâmetros da RNR usada para solucionar a EAR por meio da geração de superfícies com a variação paramétrica da RNR, podendo assim melhor sintonizar a rede neuronal para um melhor desempenho. Experimentos computacionais relacionados a perturbações nos sistemas foram realizados para analisar o comportamento das metodologias apresentadas, tendo como base o princípio dos métodos homotópicos, com uma boa condição inicial, a partir de uma ponto de operação estável e comparamos os resultados com o método de Schur. Foram usadas as plantas de dois sistemas: uma representando a dinâmica de uma aeronave e outra de um motor de indução eólico duplamente alimentado(DFIG), ambos sistemas de 6a ordem. Os resultados mostram que a RNR é uma boa alternativa se comparado com a RND e com o método de Schur.

Identiferoai:union.ndltd.org:IBICT/oai:tede2:tede/1817
Date20 June 2008
CreatorsSILVA, Fabio Nogueira da
ContributorsFONSECA NETO, João Viana da
PublisherUniversidade Federal do Maranhão, PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET, UFMA, Brasil, DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFMA, instname:Universidade Federal do Maranhão, instacron:UFMA
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds