• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 11
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neural network training for modelling and control

McLoone, Sean Francis January 1996 (has links)
No description available.
2

A practical framework for training sigma-pi neural networks with an application in rotation invariant pattern recognition

Heywood, M. I. January 1994 (has links)
No description available.
3

A Neural Network Classifier for Spectral Pattern Recognition. On-Line versus Off-Line Backpropagation Training

Staufer-Steinnocher, Petra, Fischer, Manfred M. 12 1900 (has links) (PDF)
In this contributon we evaluate on-line and off-line techniques to train a single hidden layer neural network classifier with logistic hidden and softmax output transfer functions on a multispectral pixel-by-pixel classification problem. In contrast to current practice a multiple class cross-entropy error function has been chosen as the function to be minimized. The non-linear diffierential equations cannot be solved in closed form. To solve for a set of locally minimizing parameters we use the gradient descent technique for parameter updating based upon the backpropagation technique for evaluating the partial derivatives of the error function with respect to the parameter weights. Empirical evidence shows that on-line and epoch-based gradient descent backpropagation fail to converge within 100,000 iterations, due to the fixed step size. Batch gradient descent backpropagation training is superior in terms of learning speed and convergence behaviour. Stochastic epoch-based training tends to be slightly more effective than on-line and batch training in terms of generalization performance, especially when the number of training examples is larger. Moreover, it is less prone to fall into local minima than on-line and batch modes of operation. (authors' abstract) / Series: Discussion Papers of the Institute for Economic Geography and GIScience
4

An Analysis of Overfitting in Particle Swarm Optimised Neural Networks

van Wyk, Andrich Benjamin January 2014 (has links)
The phenomenon of overfitting, where a feed-forward neural network (FFNN) over trains on training data at the cost of generalisation accuracy is known to be speci c to the training algorithm used. This study investigates over tting within the context of particle swarm optimised (PSO) FFNNs. Two of the most widely used PSO algorithms are compared in terms of FFNN accuracy and a description of the over tting behaviour is established. Each of the PSO components are in turn investigated to determine their e ect on FFNN over tting. A study of the maximum velocity (Vmax) parameter is performed and it is found that smaller Vmax values are optimal for FFNN training. The analysis is extended to the inertia and acceleration coe cient parameters, where it is shown that speci c interactions among the parameters have a dominant e ect on the resultant FFNN accuracy and may be used to reduce over tting. Further, the signi cant e ect of the swarm size on network accuracy is also shown, with a critical range being identi ed for the swarm size for e ective training. The study is concluded with an investigation into the e ect of the di erent activation functions. Given strong empirical evidence, an hypothesis is made that stating the gradient of the activation function signi cantly a ects the convergence of the PSO. Lastly, the PSO is shown to be a very effective algorithm for the training of self-adaptive FFNNs, capable of learning from unscaled data. / Dissertation (MSc)--University of Pretoria, 2014. / tm2015 / Computer Science / MSc / Unrestricted
5

Explanation and Downscalability of Google's Dependency Parser Parsey McParseface

Endreß, Hannes 10 January 2023 (has links)
Using the data collected during the hyperparameter tuning for Google's Dependency Parser Parsey McParseface, Feedforward neural networks and the correlation between its hyperparameter during the networks training are explained and analysed in depth.:1 Introduction to Neural Networks 4 1.1 History of AI 4 1.2 The role of Neural Networks in AI Research 6 1.2.1 Artificial Intelligence 6 1.2.2 Machine Learning 6 1.2.3 Neural Network 8 1.3 Structure of Neural Networks 8 1.3.1 Biology Analogy of Artificial Neural Networks 9 1.3.2 Architecture of Artificial Neural Networks 9 1.3.3 Biological Model of Nodes – Neurons 11 1.3.4 Structure of Artificial Neurons 12 1.4 Training a Neural Network 21 1.4.1 Data 21 1.4.2 Hyperparameters 22 1.4.3 Training process 26 1.4.4 Overfitting 27 2 Natural Language Processing (NLP) 29 2.1 Data Preparation 29 2.1.1 Text Preprocessing 29 2.1.2 Part-of-Speech Tagging 30 2.2 Dependency Parsing 31 2.2.1 Dependency Grammar 31 2.2.2 Dependency Parsing Rule-Based & Data-Driven Approach 33 2.2.3 Syntactic Parser 33 2.3 Parsey McParseface 34 2.3.1 SyntaxNet 34 2.3.2 Corpus 34 2.3.3 Architecture 34 2.3.4 Improvements to the Feed Forward Neural Network 38 3 Training of Parsey’s Cousins 41 3.1 Training a Model 41 3.1.1 Building the Framework 41 3.1.2 Corpus 41 3.1.3 Training Process 43 3.1.4 Settings for the Training 44 3.2 Results and Analysis 46 3.2.1 Results from Google’s Models 46 3.2.2 Effect of Hyperparameter 47 4 Conclusion 63 5 Bibliography 65 6 Appendix 74
6

Perspektivní obvodové struktury pro modulární neuronové sítě / Promising Circuit Structures for Modular Neural Networks

Bohrn, Marek January 2014 (has links)
The thesis deals with design of novel circuit structure suitable for hardware implementations of feedforward neural networks. The structure utilizes innovative data bus structure. The main contribution of the structure is in optimization of the utilization of implemented computing units. Proposed architecture is flexible and suitable for implementations of variety of feedforward neural network structures.
7

Artificial neural network methods in few-body systems

Rampho, Gaotsiwe Joel 30 November 2002 (has links)
Physics / M. Sc. (Physics)
8

Artificial neural network methods in few-body systems

Rampho, Gaotsiwe Joel 30 November 2002 (has links)
Physics / M. Sc. (Physics)
9

Métodos neuronais para a solução da equação algébrica de Riccati e o LQR / Neural methods for the solution of Equation Of algebraic Riccati and LQR

SILVA, Fabio Nogueira da 20 June 2008 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-08-14T18:28:45Z No. of bitstreams: 1 FabioSilva.pdf: 1098466 bytes, checksum: a72dcced91748fe6c54f3cab86c19849 (MD5) / Made available in DSpace on 2017-08-14T18:28:45Z (GMT). No. of bitstreams: 1 FabioSilva.pdf: 1098466 bytes, checksum: a72dcced91748fe6c54f3cab86c19849 (MD5) Previous issue date: 2008-06-20 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) / Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) / We present in this work the results about two neural networks methods to solve the algebraic Riccati(ARE), what are used in many applications, mainly in the Linear Quadratic Regulator (LQR), H2 and H1 controls. First is showed the real symmetric form of the ARE and two methods based on neural computation. One feedforward neural network (FNN), that de¯nes an error as function of the ARE and a recurrent neural network (RNN), which converts a constrain optimization problem, restricted to the state space model, into an unconstrained convex optimization problem de¯ning an energy as function of the ARE and Cholesky factor. A proposal to chose the learning parameters of the RNN used to solve the ARE, by making a surface of the parameters variations, thus we can tune the neural network for a better performance. Computational experiments related with the plant matrices perturbations of the tested systems in order to perform an analysis of the behavior of the presented methodologies, that are based on homotopies methods, where we chose a good initial condition and compare the results to the Schur method. Two 6th order systems were used, a Doubly Fed Induction Generator(DFIG) and an aircraft plant. The results showed the RNN a good alternative compared with the FNN and Schur methods. / Apresenta-se nesta dissertação os resultados a respeito de dois métodos neuronais para a resolução da equação algébrica de Riccati(EAR), que tem varias aplicações, sendo principalmente usada pelos Regulador Linear Quadrático(LQR), controle H2 e controle H1. É apresentado a EAR real e simétrica e dois métodos baseados em uma rede neuronal direta (RND) que tem a função de erro associada a EAR e uma rede neuronal recorrente (RNR) que converte um problema de otimização restrita ao modelo de espaço de estados em outro de otimização convexa em função da EAR e do fator de Cholesky de modo a usufruir das propriedades de convexidade e condições de otimalidade. Uma proposta para a escolha dos parâmetros da RNR usada para solucionar a EAR por meio da geração de superfícies com a variação paramétrica da RNR, podendo assim melhor sintonizar a rede neuronal para um melhor desempenho. Experimentos computacionais relacionados a perturbações nos sistemas foram realizados para analisar o comportamento das metodologias apresentadas, tendo como base o princípio dos métodos homotópicos, com uma boa condição inicial, a partir de uma ponto de operação estável e comparamos os resultados com o método de Schur. Foram usadas as plantas de dois sistemas: uma representando a dinâmica de uma aeronave e outra de um motor de indução eólico duplamente alimentado(DFIG), ambos sistemas de 6a ordem. Os resultados mostram que a RNR é uma boa alternativa se comparado com a RND e com o método de Schur.
10

Métodos Neuronais para a Solução da Equação Algébrica de Riccati e o LQR / Neural methods for the solution of Equation Of algebraic Riccati and LQR

Silva, Fabio Nogueira da 20 June 2008 (has links)
Made available in DSpace on 2016-08-17T14:53:01Z (GMT). No. of bitstreams: 1 Fabio Nogueira da Silva.pdf: 1098466 bytes, checksum: a72dcced91748fe6c54f3cab86c19849 (MD5) Previous issue date: 2008-06-20 / FUNDAÇÃO DE AMPARO À PESQUISA E AO DESENVOLVIMENTO CIENTIFICO E TECNOLÓGICO DO MARANHÃO / We present in this work the results about two neural networks methods to solve the algebraic Riccati(ARE), what are used in many applications, mainly in the Linear Quadratic Regulator (LQR), H2 and H1 controls. First is showed the real symmetric form of the ARE and two methods based on neural computation. One feedforward neural network (FNN), that de¯nes an error as function of the ARE and a recurrent neural network (RNN), which converts a constrain optimization problem, restricted to the state space model, into an unconstrained convex optimization problem de¯ning an energy as function of the ARE and Cholesky factor. A proposal to chose the learning parameters of the RNN used to solve the ARE, by making a surface of the parameters variations, thus we can tune the neural network for a better performance. Computational experiments related with the plant matrices perturbations of the tested systems in order to perform an analysis of the behavior of the presented methodologies, that are based on homotopies methods, where we chose a good initial condition and compare the results to the Schur method. Two 6th order systems were used, a Doubly Fed Induction Generator(DFIG) and an aircraft plant. The results showed the RNN a good alternative compared with the FNN and Schur methods. / Apresenta-se nesta dissertação os resultados a respeito de dois métodos neuronais para a resolução da equação algébrica de Riccati(EAR), que tem varias aplicações, sendo principalmente usada pelos Regulador Linear Quadrático(LQR), controle H2 e controle H1. É apresentado a EAR real e simétrica e dois métodos baseados em uma rede neuronal direta (RND) que tem a função de erro associada a EAR e uma rede neuronal recorrente (RNR) que converte um problema de otimização restrita ao modelo de espaço de estados em outro de otimização convexa em função da EAR e do fator de Cholesky de modo a usufruir das propriedades de convexidade e condições de otimalidade. Uma proposta para a escolha dos parâmetros da RNR usada para solucionar a EAR por meio da geração de superfícies com a variação paramétrica da RNR, podendo assim melhor sintonizar a rede neuronal para um melhor desempenho. Experimentos computacionais relacionados a perturbações nos sistemas foram realizados para analisar o comportamento das metodologias apresentadas, tendo como base o princípio dos métodos homotópicos, com uma boa condição inicial, a partir de uma ponto de operação estável e comparamos os resultados com o método de Schur. Foram usadas as plantas de dois sistemas: uma representando a dinâmica de uma aeronave e outra de um motor de indução eólico duplamente alimentado(DFIG), ambos sistemas de 6a ordem. Os resultados mostram que a RNR é uma boa alternativa se comparado com a RND e com o método de Schur.

Page generated in 0.0611 seconds